Digging Out Proprietary Security Features from Hardware with a Scan Side Channel Attack

Leonid Azriel Technion – Israel Institute of Technology Dec 1, 2015

Research under supervision of Avi Mendelson and Ran Ginosar

IoT Endpoint Security

• Internet of Things

- Thing = Endpoint
 - Lightweight
 - Privacy concerns
 - Accessible

Reverse Engineering of an ASIC

- Phase 1 Invasive
 ASIC → Circuit
 - Delayering
 - SEM
 - Nanoscale Imaging
 - Cross-section

- Phase 2 Algorithmic Circuit → Spec
 - FSM Extraction
 - Model Checking

– SAT

Reverse Engineering of an ASIC

- Phase 1 Invasive
 ASIC → Circuit
 - Delayering
 - SEM
 - Nanoscale Imaging
 - Cross-section

- Phase 2 Algorithmic Circuit → Spec
 - FSM Extraction
 - Model Checking
 - SAT Solvers

Scan Side Channel makes phase 1 non-invasive

Exploiting Scan - Retrieving Secrets

Exploiting Scan – Altering the Flow

Unfolding Sequential Circuits with Scan

- Scan turns the ASIC to a stateless circuit
- Mapped to the Boolean Function Learning problem: $\{0,1\}^n \rightarrow \{0,1\}^n$

Unfolding Sequential Circuits with Scan

- Scan turns the ASIC to a stateless circuit
- Mapped to the Boolean Function Learning problem: $\{0,1\}^n \rightarrow \{0,1\}^n$
- Exhaustive Search: Extract the Truth Table by running queries for all inputs

Unfolding Sequential Circuits with Scan

- Scan turns the ASIC to a stateless circuit
- Mapped to the Boolean Function Learning problem: $\{0,1\}^n \rightarrow \{0,1\}^n$
- Exhaustive Search: Extract the Truth Table by running queries for all inputs
- Exponential Size: 2ⁿ

Shannon Effect

- Shannon Effect: "almost all" Boolean functions have a complexity close to the maximal possible (~O(2ⁿ)) for the uniform probability distribution
- Corollary: For large n, "almost all" Boolean functions are not realizable in VLSI technology

 2^{2n} functions

Search space for realizable digital circuits

 In practice, logic cones have limited number of inputs: <u>Transitive Fan In</u> = K

Algorithm for Limited Transitive Fan-in

- Suppose *F*(0) = 0 (simple extension to any *F*)
- Example for K = 3:
 - Testing all values of input vector with Hamming
 Weight 3 or less covers all combinations of {a,b,c}

Junta Learning

1	0	1	1	1	0	0	1	0	1	1	0	1	0	1	-	-	-	-	1	1
1	1	0	1	1	0	0	1	0	1	0	0	1	0	1	-	-	-	-	1	0
0	1	1	0	1	1	0	0	0	0	0	1	1	0	1	-	-	-	-	0	1
0	1	0	1	0	1	1	0	1	1	0	0	0	0	0	-	-	-	-	0	0
0	0	1	1	0	0	1	1	0	1	1	1	0	1	1	-	-	-	-	0	1
1	1	1	1	1	0	1	1	1	1	0	0	0	1	0	-	-	-	-	0	1
0	0	1	1	0	1	0	0	1	0	1	1	1	1	1	-	-	-	-	0	1
1	0	1	0	1	1	0	1	1	0	0	0	0	0	0	-	-	-	-	1	0
1	1	0	0	0	0	1	1	0	0	0	1	0	0	1	-	-	-	-	1	0
0	1	0	1	1	0	1	0	1	1	0	1	0	1	1	-	-	-	-	1	0
0	1	0	1	0	1	0	0	0	0	1	1	1	0	0	-	-	-	-	0	1
0	1	1	0	1	1	1	0	1	1	1	0	0	1	0	-	-	-	-	1	0
0	1	0	0	1	1	0	1	1	0	0	0	1	1	0	-	-	-	-	1	1
1	1	0	1	1	1	0	1	0	0	0	1	1	0	1	-	-	-	-	1	1
1	1	0	0	1	0	1	0	1	0	1	1	0	0	0	-	-	-	-	0	0
1	0	1	1	0	0	1	1	0	0	1	0	0	0	1	-	-	-	-	0	1
0	1	0	1	0	0	0	0	0	0	0	0	1	0	0	-	-	-	-	0	0
0	1	1	1	0	1	1	1	0	1	1	0	0	0	0	-	-	-	-	1	0
0	1	0	1	1	1	1	1	1	1	1	0	1	1	0	-	-	-	-	0	1
0	0	1	0	1	1	1	0	1	1	0	0	1	0	0	-	-	-	-	1	1
1	0	0	1	0	0	1	0	1	1	0	1	0	0	0	-	-	-	-	0	0

Runtime ~ 2^{κ} \rightarrow scalable with the chip size

Transitive Fan-in for ITC'99 benchmark

Locality

- Hierarchical structure loose connectivity between blocks: clustering
- Physical locality: adjacent registers in the chain are likely to belong to the same function
- Often the same sub-circuit is shared by a few logic cones

Sharing sub-circuits

= Boolean cube

= Implicant: a cube, for which F_i=1 for some i

Continue while there is a change

Learned the Open Cores 'Tiny AES' implementation containing ~8000 registers with only ~1.6M probe operations

• Thanks to the 'avalanche' effect

Countermeasures

- Giving up on scan
- Disabling scan by burning fuses after production
- Logic BIST
- Not allowing dynamic switching
- Protected entry to scan mode

Main Messages

• Reverse Engineering can be non-invasive

 Scan Side Channel is a threat both to security and to IP protection

Conventional protection methods not always efficient against reverse engineering

Need protection targeted to this attack

Thanks!

