

ACCURATE MODELING OF THE SIEMENS S7 SCADA PROTOCOL FOR INTRUSION DETECTION AND DIGITAL FORENSICS

Amit Kleinmann and Avishai Wool

School of Electrical Engineering, Tel Aviv University

• Brief introduction to ICS and SCADA

- The Siemens S7 SCADA Protocol
- Modeling for intrusion detection
- Results
- Conclusions & future work

INDUSTRIAL CONTROL SYSTEMS (ICS)

- Automatic monitor/control of industrial facilities
- Electricity generation, water treatment, gas pipes, etc...

- Supervisory Control and Data Acquisition (SCADA)
 - Human-Machine Interface (HMI): operator control
 - Programmable Logic Controllers (PLC):
 o connected to sensors, actuators, running a control program

No

Security

- Not isolated anymore
- Include standard IT components
- More features, more volume

PROTECTING ICS SYSTEMS

Threats

• Gaining access to the Control Network => Enables Attacks:

- Violating: confidentiality, availability, integrity
 - E.g., DOS, manipulate net. protocols, Tamper with memory, Buffer Overflow
- Deny committing an attack (Attribution, Lack of forensic capabilities)
 - Violating non repudiation

Constraints

• Difficult/expensive to replace equipment

- Concerns over loss-of-control
 - false-positive => block legitimate traffic

NIDS Network Intrusion Detection System Signature detection

- Inherently lags behind attack development

 E.g., obfuscation & polymorphism utilized by recent network attacks
- Fails to protect from unknown and novel threats
- Anomaly detection

THE S7 PLC PLATFORM

Siemens TIA Portal:

STEP7 Engineering WS + WinCC HMI SW

Siemens SIMATIC S7 - PLC:

- Over 30% of the worldwide PLC market
- Models:
 - Standard (S7-200, S7-300, S7-400)
 - New generation (S7-1200, S7-1500)

SCADA SUPERVISORY CONTROL AND DATA ACQUISITION IN A NUTSHELL

Process LAN

- Data Acquisition
 - Sensors
 - Located at various points
- o Control
 - RTU/PLC
 - SCADA Server a.k.a. Master Terminal Unit (MTU)

• Network Communications

- Point to point
- Query-Response SCADA Protocol
 - E.g., Modbus, Siemens S7, IEC 60870-5-104, DNP3

• Data Presentation

- Human Machine Interface (HMI)
- Data Historian centralized DB archive data

PLC

Sensors/

Actuators

PLC

Sensors/

Actuators

THE S7 PROTOCOL 1/2

IP Header TCP Header TPKT Header COTP Header S7 (Header and PDU)

• TCP – Port 102

• ISO-TPKT: ISO-on-TCP - RFC 1006:

- Emulates ISO COTP on top of TCP
 - Adds packet boundaries header (4 bytes): version & length fields

• COTP - ISO 8073; RFC 905

• TSAP addressing

• Contains: device type and addresses (direct, or #rack + #slot)

TPKT = Transport Service on top of the TCP **COTP** = Connection-Oriented Transport Protocol

THE S7 PROTOCOL 2/2

• S7 is proprietary protocol

• Communication modes:

- **P2P**: partner devices exchange unsolicited data
- Client-Server: HMI sends query PLC – sends respond

• Protocol flavors:

- Standard (0x32)
- New (0x72)

INTRODUCING THE GW MODEL

Developed at the Net. Security **Lab of TA University**

- By Niv Goldenberg and Avishai Wool
- Tested on recorded Modbus traffic

Observation – SCADA networks have:

- Relatively static topology
- Regular network traffic pattern

Learning phase: builds DFA for PLC-HMI connection

- State represents a valid query or response
- Symbol PDU fields, e.g., function code, memory address

Enforcement phase

• Irregular query/response occurs => irregular behavior is detected

9

• An alert may be triggered

GW Model advantages:

• Goes much deeper into the details of the SCADA protocol spec

• Captures inter-packet relationship

 $s_i \neq \{q_1, r_1, q_2, r_2\}$ Raise ALARM(symbol)

4. 'Start' state $(\mathbf{q}_0 \in \mathbf{Q})$

5. Set of 'accept' (final) states (F \underline{C} Q)

IS IT POSSIBLE TO MODEL THE S7 TRAFFIC WITH A DFA

Observations:

- The S7 traffic is periodic! with a short period
- The PDU is divided into three parts:
 Fixed header
 Parameters part
 Data part

THE S7-0x32 PDU					
Fixed Header for ROSCTR 1 or 3, Func. Code 4 or 5					
(Retarb to cote)d	ROSCTR	Reserved			
Requ	est Id	Parameter Length			
Data I	length	Error Code - only	y for ROSCTR 3		
Function Code	Item Count	DOSCTD - Domoto	Onemating Compiles		
Control					
Read/Write	Requestiab Par	ameter Iten	n		
Var Spec Type	Var Spec Length	Var Spec Syntax	Transport size		
		Id	-		
Length DB Number			umber		
Area	Address				
• Variable spec	ification: implies	attribute settings	to the item variabl <mark>e</mark> /		
• E.g., permitted address range, supported data types and access permissions					
• Transport size = data type => implies data length					
• Length: the number of referenced variables					
• Data Block (DB) memory area - stores internal state of the PLC					
program	program				
	 Each DB contai 	ns data-item/s			
Return code	Transport size	Data length (per	r transport size)		

APPLYING THE GW MODEL TO S7

What constitutes a symbol? <u>Selected PDU fields</u>:

• Header fields

- ROSCTR
- Parameter Length
- Data Length
- Error Code*
- Function Code
- Item Count
- All the parameter items*
- All the data header fields of data items*

* If exist/s

• Configuration:

- Max pattern length: 75 symbols
- Validation window: 300 symbols

• Number of symbol bits \approx Length of PDU fields

 \Rightarrow Symbol = hash of selected PDU fields

• E.g., 64 least significant bits of sha-1

COLLECTED DATASETS

- Collected from ICS that controls:
- manufacturing: raw materials are weighed/measured in a mixer
 - Single channel between the HMI and an S7-compliant VIPA PLC
- Waste Water: tank levels, flow rates, and temperatures/pressures

	Starting and stanning of num	ing ononir	and closing	r of volvog
#	Description	Duration	TCP Packets	S7 Packets
1	Building material manufacturing plant	3242 Sec	56843 200	PI 25747
2	Waste water treatment facility	1691 Sec.	38962	21670
3	Waste water treatment facility	1204 Sec.	42465	25379

RESULTS OF APPLYING THE BASIC MODEL ON S7 TRAFFIC

- Definitions:
 - Average Event Rate (AER): sym/sec⁰, +
 - S7 quiescent period
 - A time frame during which only `Normal' symbols were exhibited

• Results:

- Patterns are short
- Pattern lengths ≈ AER

• Indicating that the system has inherent 1-second periods

Over <u>98.16%</u> of all packets were identified as <u>`Normal'</u>

Datase 2	AR	B attern
#1 Part 1	8.01	8
#1 Part 2	11.99	12
#1 Part 3	12.09	12
#2 All	10.96	12
#3 Part 1	10.81	12
#3 Part 2	20.13	22

SPLITTING AN S7 PACKET INTO SEPARATE ITEMS

Still

a tiny challenge

We avoid these `false alarms' by applying the model at a finer granularity

Create an artificial packet per each of the PDU items

Apply the model to the artificial packets

Configuration:

• Max pattern length: 1500 (artificial) symbols

<u> Validation window: 6000 (artificial) symbols</u>									
Dataset	AER	Pattern	# Normal	# Unknown	# Miss	%Normal	%Unknown	%Miss	
#1 Part 1	45.89	46	39667	28	1	99.92	0.07	0.01	
#1 Part 2	63.78	64	61824	42	0	99.93	0.07	0.00	
#1 Part 3	58.18	58	82535	86	0	99.90	0.10	0.00	
#2 All	180.24	198	304949	0	565	99.82	0.00	0.18	
#3 Part 1	178.19	198	23150	0	16	99.93	0.00	0.07	
#3 Part 2	370.20	406	389335	272	950	99.69	0.07	0.24	

SIMULTANEOUS INFLIGHT REQUEST AND RESPONSE PACKETS

The basic GW model implicitly assumes that:

in a clean capture of benign traffic, each query packet is succeeded by its corresponding response packet

CObservation:

The HMI sometimes issues several requests, before receiving the corresponding responses

Q-1 Q-2 R-1 Q-3 R-2 Variations in packet order are reflected in the model by `Miss' events

SYNCHRONIZING THE INFLIGHT REQUEST AND RESPONSE PACKETS

Avoid the false alarms **by synching** each **request with** its associated **response**, before taking the DFA step

• Applied during both learning phase and enforcement phase

• Implementation:

• Queue the request packets, and

Q-3 Q-2

- Handle request when its corresponding response is captured
- Response that results in `Miss' event => take out of queue all

requests whose corresponding responses were missed

 $\mathbf{20}$

Arriving symbols

Query queue

RESULTS BEFORE AND AFTER APPLYING SPLITTING AND SYNCHRONIZATION

<u>Detected `Miss' symbols on trace #2</u>

	%		
Dataset	Unkwn	Miss	
#2 All	2.01	0.66	
#3 Prt 1	0.78	0.21	
#3 Prt 2	3.04	0.47	

After splitting

	%		
Dataset	Unkwn	Miss	
#2 All	0.00	0.18	
#3 Prt 1	0.00	0.07	
#3 Prt 2	0.07	0.24	

After splitting and synchronization

	%		
Dataset	Unkwn	Miss	
#2 All	0.00	0.03	
#3 Prt 1	0.00	0.01	
#3 Prt 2	0.07	0.11	

CONCLUSIONS AND FUTURE WORK

- Our DFA model has:
- o Very low `false positive' rate over S7 benign traffic
- Remaining challenge:
 - Multiple phases with irregular periods between them
 Periods (phases) each with its own distinct pattern

