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Abstract. Recently, a new search strategy called configuration checking (CC)
was proposed, for handling the cycling problem of local search. The CC strat-
egy was used to improve the EWLS algorithm, a state-of-the-art local search for
Minimum Vertex Cover (MVC). In this paper, we use this strategy to develop
a local search algorithm for SAT called CWcc and a local search algorithm for
weighted MAX-2-SAT called ANGScc. The CC strategy takes into account the
circumstances of the variables when selecting a variable to flip. Experimental re-
sults show that the configuration checking strategy is more efficient than previous
strategies for handling the cycling problem. We further improve CWcc; the result-
ing algorithm SWcc outperforms a state-of-the-art local search SAT solver TNM.
ANGScc is also competitive with a state-of-the-art weighted MAX-2-SAT lo-
cal search algorithm. Finally, we conduct some further analysis and experiments
to compare the CC strategy with two other methods for handling the cycling
problem: the tabu mechanism and the promising decreasing variable exploitation
strategy.

1 Introduction

Local search algorithms have been successfully used to solve SAT and MAXSAT prob-
lems [11]. The local search method is especially appealing when the problem instance
is hard and large in size, or a reasonably good solution is needed in a short time, or
when the knowledge about the problem domain is rather limited [9]. However, the local
search method suffers from the problem of the cycling phenomenon, i.e., returning to
a candidate solution that has been visited recently. The cycling phenomenon wastes a
local search algorithm much time and prevents it from getting out of local optima. It is
impractical to incorporate local search with an additional mechanism to remember all
previously visited candidate solutions, which requires exponential space and huge time
consumption for checking.

To overcome the cycling problem, some naive methods such as random walk and
restarting strategy are incorporated into local search algorithms. Besides, there are two
significant previous methods for handling the cycling problem: the tabu mechanism and
the promising decreasing variables (PDV) exploitation strategy [12].
? Corresponding author
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Recently, a new search strategy called configuration checking (CC) was proposed
to deal with the cycling problem of local search. It has been use to improve EWLS
[2], a state-of-the-art local search algorithm for Minimum Vertex Cover (MVC). The
resulting algorithm EWCC performs significantly better than EWLS and is currently
the best MVC local search algorithm [3].

In this paper, we apply the CC strategy to design local search algorithms for SAT
and weighted MAX-2-SAT. The CC strategy remembers the circumstance of a variable
when it is flipped, and prevents it from being flipped if its circumstance has not been
changed since its last flipping, where the circumstance of a variable refers to truth value
of all its neighbors. We note that the CC strategy is novel in SAT local search algorithms.

We develop a local search algorithm for SAT called CWcc (Clause Weighting SAT
with Configuration Checking) and a local search algorithm for weighted MAX-2-SAT
called ANGScc (Adaptive Noise Greedy Search with Configuration Checking) by using
the CC strategy. To demonstrate the efficiency of the CC strategy, we slightly modify
CWcc and ANGScc and obtain CWtabu and ANGStabu by using the tabu mechanism,
and CWpdv by using the PDV strategy. The experimental results of these algorithms
show that the CC strategy is better than the two previous methods.

Further, we improve CWcc, which results in an algorithm, called SWcc, that outper-
forms the state-of-the-art local search SAT solver TNM. And ANGScc is competitive
with a state-of-the-art weighed MAX-2-SAT local search algorithm. Nevertheless, the
aim of this work is not to design algorithms of best performance, but to demonstrate the
power of the configuration checking strategy.

Some further analysis and experiments are conducted and show that the forbidding
strength of the CC strategy is between those of the tabu mechanism and the PDV strat-
egy, and appears neither too weak, nor too strong. Thus, the CC strategy is a promising
alternative strategy for dealing with the cycling problem.

The remainder of this paper is organized as follows: we provide some necessary
background knowledge in the next section. Then we present the configuration check-
ing strategy. After that, we use the configuration checking strategy to develop local
search algorithms for SAT and weighted MAX-2-SAT respectively, and carry out some
experimental studies to compare the efficiency of the CC strategy with the previous
strategies and compare the proposed algorithms with the state-of-the-art algorithms.
This is followed by further analysis about the differences between the configuration
checking strategy and the previous strategies. Finally we give some conclusions and
future directions.

2 Preliminaries

Given a Conjunctive Normal Form (CNF) formula F = C1 ∧C2 ∧ ... ∧Cm on a set of
variables {x1, x2, ..., xn}, the satisfiability problem (SAT) consists in testing whether
all clauses in F can be satisfied by some consistent assignment of truth values to vari-
ables. A clause ci is a disjunction of literals, where a literal lj is either a variable xj or
its negation xj . We say a literal l occurs in a clause, if this clause contains l. However,
when we say a variable x occurs in a clause, we mean that this clause contains either
x or x. By V (F ) we denote the set of all variables of F . N(x) = {y|y ∈ V (F ) and y
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occurs in at least one clause with x} is the neighborhood of a variable x. We use UC
and V (UC) to denote the set of unsatisfied clauses under the current assignment and
the set of variables occur in at least one unsatisfied clause.

3 The Configuration Checking Strategy for SAT

In this section, we present the configuration checking (CC) strategy for handling the
cycling problem of local search, using SAT as example domain. In the context of SAT
solving, the CC strategy remembers each variable’s circumstance information and pre-
vents a variable from being flipped if its circumstance has not been changed since its
last flipping. The intuition behind this idea is that we can reduce cycles on the whole
candidate solution by reducing local structure cycles.

3.1 Definition of Configuration Checking

The CC strategy is based on the concept configuration, which denotes a variable’s
circumstance. Here the configuration of a variable refers to the truth value of all its
neighbors. The formal definitions are as follows:

Definition 1. Given a CNF formula F and s the current assignment to V (F ), the
configuration of a variable x ∈ V (F ) is a vector Cx consisting of truth value of
all variables in N(x) under s (i.e., Cx = s|N(x), which is the assignment restricted to
N(x) ).

Given a CNF formula F , the configuration checking strategy can be described
as follows: when selecting a variable to flip, for a variable x ∈ V (F ), if the configura-
tion of x has not changed since x’s last flip, which means the circumstance of x never
changes, then it should not be flipped. This strategy is reasonable in terms of avoiding
cycles; otherwise, the algorithm is led to a scenario it has recently faced, which is likely
to cause a cycle.

The configuration checking heuristic takes into account the variables’ circumstance
when selecting a variable to flip. It appears reasonable and helpful to incorporate such
a circumstance-concerning strategy to the traditional variable-based heuristics, as the
best decision on a variable should come from not only its evaluation, but also its cir-
cumstance, such as the state of the community it belongs to.

3.2 An Implementation of Configuration Checking

In order to implement the configuration checking strategy in local search algorithms for
SAT (and MAXSAT), we employ an array confChange, whose element is an indicator
for a variable — confChange[x] = 1 means the configuration of x has changed since
x’s last flipping; and confChange[x] = 0 on the contrary. During the search proce-
dure, the variables with confChange[x] = 0 are forbidden to be flipped. We maintain
the confChange array as follows:

– Rule 1: In the beginning, for each variable x, confChange[x] is initialized as 1.
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– Rule 2: When flipping x, confChange[x] is reset to 0, and for each y ∈ N(x),
confChange[y] is set to 1.

The CC strategy is general and simple, and it can be used directly to constraint
satisfactory problems (CSP) and other combinatorial problems.

We also note that to make a balance between the accuracy of the CC strategy and
the complexity per step, we adopt the above approximate implementation of CC, which
does not achieve full checking. Recall that the spirit of the CC strategy is that a variable
x for which the configuration is not changed after its last flip is forbidden to be flipped.
Consider x is flipped (confChange[x] is set to 0); after that, a variable y ∈ N(x) is
flipped (confChange[x] is set to 1) and then afterwards y is flipped again (a flip of
y’s another neighbor may make confChange[y] = 1 and thus y can be flipped again).
Suppose other neighbors of x do not change their truth values. In this case, the config-
uration for x is considered changed (confChange[x] = 1) by the implementation in
this paper, but it is not really changed since the truth value of all x’s neighbors are the
same as the last time x is flipped.

A naive accurate implementation of the CC strategy is to store the configuration
for a variable x (store state of its neighbors) when it is flipped, and check the config-
uration when needed, say, when considering selecting x as the flip variable. Neverthe-
less, as is usual in local search algorithms, there is a tradeoff between the accuracy of
heuristics and the complexity per step. It is rather time-consuming to execute the CC
strategy in this naive accurate way. This accurate implementation needs O(∆(V (F )))
for both storing and checking the configuration for a variable, where ∆(V (F )) =
max{|N(x)||x ∈ V (F )}. Therefore, the worst time complexity per step for the CC
strategy is O(∆(V (F ))|V (F )|)+O(∆(V (F ))) = O(∆(V (F ))|V (F )|) where (check
the configuration for all variables and store the configuration for the flipped variable).
While for the approximate implementation in this work, both checking and updating
the confChange indicator of a variable need only 1 operation, and thus the worst
time complexity per step for the CC strategy is only O(|V (F )|) + 1 + O(∆(V (F ))) =
O(|V (F )|) (check the confChange indicators for all variables, reset the confChange
indicator for the flipped variable and update the confChange indicators for the neigh-
bors of the flipped variable).

4 Improving Local Search for SAT by Configuration Checking

We develop a simple local search algorithm for SAT, called CWcc (Clause Weighting
with Configuration Checking), which utilizes a clause weighting scheme that updates
clause weights when stuck in local optima, and combine the CC strategy into the al-
gorithm. The experimental results demonstrate that the configuration checking strategy
significantly improves the performance of CWcc. We also improve it to achieve the
state-of-the-art performance.

4.1 The CWcc Algorithm

The complete procedure of CWcc is shown in Algorithm 1. From the procedure, we can
see that, besides the CC strategy, CWcc adopts the clause weighting technique, which
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has been widely used in local search algorithms for SAT [14, 16, 10, 19]. In CWcc, each
clause c is associated to a positive integer number w(c) as its weight. For a variable x,
we use ∆w(x) to denote the change in the total weight of all satisfied clauses caused
by flipping x. When CWcc gets stuck in local optima, for each unsatisfied clause c,
w(c) is increased by 1, and then CWcc takes a random step to continue to search from
another starting point. We maintain the set D (in line 8) dynamically during the search
procedure, rather than scanning V (F ) each step.

Algorithm 1: CWcc

CWcc(F, maxSteps)1
Input: CNF-formula F , maxSteps
Output: A satisfying truth assignment s of F , if found
begin2

s← randomly generated truth assignment;3
initialize all clause weights as 1 and compute ∆w(x) for each variable x;4
initialize confChange[x] as 1 for each variable x;5
for step← 1 to maxSteps do6

if s satisfies F then return s ;7
if D = {x|∆w(x) > 0 and confChange[x] = 1} 6= ∅ then8

v ← x ∈ D such that ∆w(x) is the largest, breaking ties in favor of the least9
recently flipped variable;

else10
w(ci)← w(ci) + 1 for each unsatisfied clause ci;11
c← randomly selected unsatisfied clause;12
v ← the least recently flipped variable in c;13

flip v, update confChange array according to Rule SAT2;14

return “Solution not found”;15

end16

4.2 Experimental Evaluation of CWcc

We demonstrate the effectiveness of the CC strategy on SAT local search algorithms
by comparing the performance of CWcc with its alternative version CWtabu. CWtabu

works in the same way as CWcc, except for one subtle modification: CWtabu does not
utilize the CC strategy; instead, it utilizes the tabu mechanism to keep track of the
recently flipped variables in the tabu list and prevents them from being flipped. The
length of the tabu list is called tabu tenure (tt). we run CWtabu with tt = 1 and 3.

The experiments are carried out using 20 random phase-transition 3-SAT problems
and several classes of structured problems. The random 3-SAT instances are from the
SAT 2009 competition benchmark5, including the 10 largest instances in the “satisfiable
random” category (3SAT-560vars) and 10 instances in the “unknown random” category

5 http://www.satcompetition.org/
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(3SAT-2000vars). The structured problems include AIS, the satisfiable instances in QG
and SSA classes, and the largest (and the hardest) instance in Logistics and Blockworld
classes, all available in SATLIB6.

CWcc and CWtabu are implemented in C++ and compiled by g++ with the ’-O2’
option. The experiments are run on a 3 GHz Intel Core 2 Duo CPU E8400 and 4GB
RAM under Linux. We say an instance is solved by a solver if the solver finds a solution
satisfying all clauses of the instance. The portion of solved instances represents the
success rate of the solver for this class. We run each solver within 1000 seconds for
each instance in each class to get a success rate for this class, and repeat the execution
100 times to get the final averaged success rate (“suc”). We also report the total run time
in seconds for each solver to run 100 times for each class (“total time”).

Instance
CWtabu(tt=1) CWtabu(tt=3) CWcc

suc total time suc total time suc total time
3SAT-560vars(10 instances) 100% 4012 100% 3760 100% 928
3SAT-2000vars(10 instances) 76.9% 169631 82% 136864 98.3% 38381
satQG(10 instances) 86.4% 126518 88.9% 115689 97.3% 62027
ais12 100% 6.5 100% 7 100% 5.5
bw large.d 100% 1400 100% 811 100% 1217

Table 1. Comparative results of CWcc with CWtabu

The 4 SSA instances and logistics.d are solved by all the three solvers in 100%
success rate with the average run time less than 0.01 second, so they are not reported.
As can be seen from Table 1, CWcc outperforms the two CWtabu algorithms on all
instances, except for a little worse than CWtabu with tt = 3 on bw large.d. CWcc

achieves a significant improvement over CWtabu on the random 3-SAT instances and
the satQG instances. Specially, the run time of CWtabu on the random 3-SAT instances
are about 4 times that of CWcc.

We also replace the CC strategy in CWcc with the PDV strategy, resulting in an-
other alternative version of CWcc, called CWpdv . CWpdv follows the same overall pro-
cedure as CWcc, except for one subtle modification: it does not utilize the CC strategy;
instead, it uses the PDV strategy. In detail, it maintains an array promising where
promising[x] = 1 means x is a promising decreasing variable; and promising[x] = 0
on the contrary. Then, the D set in Algorithm 1 (line 8) is defined as D = {x|∆w(x) >
0 and promising[x] = 1} in CWpdv . Our experiments show that CWpdv performs
much worse than CWcc and CWtabu on these instances, so we do not report the results
of CWpdv in Table 1.

In addition, we run G2WSat7 (the representative of local search SAT solvers with
the PDV strategy) on the 10 3SAT-560vars instances, and the total run time for running
all instances 100 times is 2509s, compared to 928s for CWcc.

6 http://www.satlib.org
7 downloaded from http://www.satcompetition.org/
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4.3 SWcc: An Improved Version of CWcc

We compare the CC strategy with the tabu mechanism and the PDV strategy in a simple
algorithmic framework. In order to focus on the comparison, we keep CWcc rather sim-
ple. To convince that the CC strategy for SAT is genuinely useful, we further improve
CWcc, making it achieve state-of-the-art performance, especially on random instances.

We introduce a smoothing mechanism into the clause weighting scheme in CWcc,
resulting in the algorithm called SWcc (Smoothed Weighting with Configuration Check-
ing). Smoothing mechanisms have been used to improve clause weighting local search
methods for SAT [20, 16, 10, 19]. The smoothing mechanism in SWcc is simple: when
the averaged clause weight (over all clauses) w is bigger than a threshold value γ, all the
clause weights are smoothed as w(ci) := bρ ·w(ci)c+ b(1−ρ)wc. In our experiments,
γ := 300 and ρ := 0.3. The two parameters are set preliminarily according to a few
experiments. We believe if we set these parameters more carefully, further improvement
could be made.

We compare SWcc with a state-of-the-art local search algorithm TNM (Two Noise
Mechanisms), which won a GOLD Medal in the “Satisfiable Random” category of
the SAT 2009 competition8. The experiments are carried out on some random phase-
transition instances from the SAT 2009 competition. The cutoff time of each run is still
1000 seconds. We report the success rate, the total run-time in seconds and the averaged
step number over all 1000 runs.

Instance
SWcc TNM

suc total time ave step suc total time ave step
3SAT-560vars(10 instances) 100% 500 1109239 100% 1450 3097895
3SAT-2000vars(10 instances) 100% 1565 2566081 100% 1623 3272796
3SAT-4000vars(10 instances) 100% 23808 27442994 94.9% 72170 134020195

Table 2. Comparative results of SWcc with TNM on random 3SAT instances

As shown in Table 2, SWcc overall performs better than TNM on the random phase-
transition 3-SAT instances and significantly outperforms TNM on the random 3-SAT
instances with 560 and 4000 variables. Specially, on the hardest instance (for both al-
gorithms) in the 3SAT-4000vars group, which is much harder than the other instances,
SWcc achieves a success rate 100% while this number is 49% for TNM. Also, SWcc

is always better than TNM in terms of step performance, which is an implementation-
independent measure of algorithms.

In order to convince the power of the CC strategy in SWcc, we modify SWcc slightly
by replacing the CC strategy with the tabu mechanism and the PDV strategy, which
results in SWtabu(with tt = 1 and tt = 3) and SWpdv . Our experiments show that
SWtabu and SWpdv perform essentially worse than SWcc. For example, both SWtabu

and SWpdv can not find a solution for the hardest instance in the 3SAT-4000vars group
in 50 runs. Therefore, we conclude that the CC strategy plays an important role in SWcc.

8 downloaded from http://www.satcompetition.org/
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5 Improving Local Search for Weighted MAX-2-SAT by
Configuration Checking

We develop a simple local search algorithm for weighted MAX-2-SAT which adopts an
adaptive noise parameter for controlling the probability of performing a random step.
We then combine the CC strategy into the algorithm, and get an improved algorithm
called ANGScc (Adaptive Noise Greedy Search with Configuration Checking). The
experimental results demonstrate that the configuration checking strategy significantly
improves the algorithm and makes it achieve state-of-the-art performance.

5.1 The ANGScc Algorithm

As is usual, ANGScc treats weighted MAX-2-SAT as a minimization problem, and the
objective function is

f(s) =
∑

ci is not satisfied under s
w(ci)

where w(ci) is the weight of clause ci and s is an assignment to V (F ). For a variable
x, we use ∆w(x) to denote the change in the total weight of all satisfied clauses caused
by flipping x.

ANGScc performs either a greedy step or a random step at each step. The prob-
ability of performing a random step is controlled by a noise parameter wp (walking
probability), which is adjusted during the search. For adjusting wp, we adopt the adap-
tive noise mechanism introduced in [8]. In detail, in the beginning wp is initialized as
0. During the search procedure, each time updating wp, the current objective function
value is stored and becomes the basis for measuring improvement. If no improvement
in objective function value has been observed over the last θ ·m search steps, where m is
the number of clauses of the given instance and θ = 1/6, then wp := wp+(1−wp) ·φ,
where φ = 0.2; otherwise, if an improvement in objective function value is observed,
then wp := wp−wp ·φ/2. The complete procedure of ANGScc is shown in Algorithm
2.

5.2 Empirical Study of ANGScc

We demonstrate the effectiveness of the CC strategy on weighted MAX-2-SAT by com-
paring the performance of ANGScc with its alternative version ANGStabu. ANGStabu

works in the same way with ANGScc, except for one subtle modification: ANGStabu

does not utilize the CC strategy; instead, it uses the tabu mechanism to keep track of
the last flipped variable and prevents it from being re-flipped in the next step. We also
compare the performance of ANGScc with a state-of-the-art local search algorithm for
weighted MAX-2-SAT called ITS (Iterated Tabu Search) [15], which significantly out-
performs general MAXSAT local search algorithms such as GWSAT [17], Adaptive
Novelty+ [8], SAPS [10], and IRoTS [18] on the BHOSLIB benchmarks and some
random instances generated by the authors [15]. ITS is known as one of the best local
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Algorithm 2: ANGScc

ANGScc(F, maxSteps)1
Input: weighted MAX-2-SAT instance F , maxSteps
Output: A truth assignment s∗ of F
begin2

s← randomly generated truth assignment;3
s∗ ← s;4
compute ∆w(x) for each variable x;5
initialize confChange[x] as 1 for each variable x;6
wp← 0;7
for step← 1 to maxSteps do8

if f(s) < f(s∗) then s∗ ← s;9
adjust wp;10
with probability wp begin11

c← randomly selected unsatisfied clause;12
v ← randomly selected variable in c;13

end14
otherwise begin15

v ← x ∈ V (UC) and confChange[x] = 1 such that ∆w(x) is the largest,16
breaking ties randomly;

end17
flip v, update confChange array according to Rule 2;18

return s∗;19

end20
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search algorithms for weighted MAX-2-SAT, especially for the BHOSLIB benchmarks
[7].

The experiments are carried out using the BHOSLIB benchmarks, which are hard
random instances with known optimal values of the objective function9. The BHOSLIB
(Benchmarks with Hidden Optimum Solutions) benchmarks were generated randomly
in the phase transition area according to the RB model [21]. Generally, those phase-
transition instances generated by RB have been proven to be hard both theoretically
[24] and practically [23, 22].

Instance #vars #clauses f∗ ANGStabu ANGScc ITS
suc suc suc

frb40-19-1 760 42173 720 100% 100% 100%
frb40-19-2 760 42127 720 70% 80% 30%
frb40-19-3 760 41927 720 90% 100% 100%
frb40-19-4 760 42485 720 40% 100% 70%
frb40-19-5 760 42499 720 0 90% 20%
frb45-21-1 945 60311 900 30% 80% 90%
frb45-21-2 945 59716 900 40% 80% 100%
frb45-21-3 945 59330 900 10% 20% 20%
frb45-21-4 945 59652 900 40% 100% 100%
frb45-21-5 945 59691 900 20% 80% 60%
frb50-23-1 1150 81422 1100 0 40% 10%
frb50-23-2 1150 82201 1100 10% 10% 10%
frb50-23-3 1150 82360 1101 80% 100% 90%
frb50-23-4 1150 81608 1100 30% 80% 100%
frb50-23-5 1150 81385 1100 10% 30% 70%
frb53-24-1 1272 95711 1220 20% 60% 100%
frb53-24-2 1272 95773 1220 80% 80% 100%
frb53-24-3 1272 95611 1219 0 10% 20%
frb53-24-4 1272 95792 1220 20% 30% 30%
frb53-24-5 1272 95710 1219 0 10% 10%
frb56-25-1 1400 111328 1345 0 20% 40%
frb56-25-2 1400 111081 1345 10% 20% 40%
frb56-25-3 1400 111012 1344 0 10% 0
frb56-25-4 1400 111682 1344 0 0 10%
frb56-25-5 1400 111235 1344 10% 10% 20%
frb59-26-1 1534 128308 1476 20% 10% 20%
frb59-26-2 1534 127956 1476 0 30% 10%
frb59-26-3 1534 127911 1476 0 10% 30%
frb59-26-4 1534 128799 1476 0 10% 10%
frb59-26-5 1534 127763 1475 0 40% 40%

Averaged success rate 24.3% 48% 48.3%
Table 3. Comparative results of ANGScc with ANGStabu and ITS, where f∗ is the best value of
the objective function provided by the three algorithms

9 http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/max-sat-benchmarks.htm



11

Both ANGScc and ANGStabu are implemented in C++, and the code of ITS is
download from http://www.soften.ktu.lt/˜gintaras/wmax2sat.html. Since ITS is coded
for running on Windows, we compile all these three solvers in Microsoft Visual Studio
2003, and all experiments in this section are run on a 1.83 GHz Intel Core 2 Duo CPU
T5600 and 2GB RAM under Windows XP. For each instance, each algorithm performs
10 independent runs with the cutoff time 600 seconds. For each algorithm on each
instance, we report the success rate of finding a best solution returned by the three
algorithms. The results in bold is the best performance for an instance.

Comparative results on BHOSLIB benchmarks are shown in Table 3. The two
groups of small instances (frb30, frb35) are not reported, as all the solvers can find an
optimal solution in 100% success rate within a few minutes. As can be seen from Table
3, ANGScc outperforms ANGStabu on almost all instances. Furthermore, there are 10
instances for which ANGStabu never reaches the best solution that ANGScc finds. The
averaged success rate over all instances of ANGScc is twice that of ANGStabu.

Table 3 also suggests that ANGScc and ITS are competitive and complementary as
they dominates on different instances — each has its own territory. Also their averaged
success rate are nearly the same.

6 Further Analysis and Comparison

In this section, we review the tabu mechanism and the promising decreasing variable
exploitation strategy, and discuss the differences between the CC strategy and them in
the context of SAT. For simplicity, in the following discussions, when talking about the
CC strategy, we refer to the implementation in this work.

6.1 Tabu vs. Configuration Checking

The tabu mechanism [5, 6] has been widely used in local search algorithms [13, 1, 18,
4]. To prevent the local search to immediately return to a previously visited candidate
solution and to avoid cycling, the tabu mechanism forbids reversing the recent changes,
where the forbidding strength is controlled by a parameter called tabu tenure. Usually,
the tabu tenure is set to be 1 consistently, to avoid manually adjusting this parameter.

Proposition 1. For a given variable x, if x is forbidden to flip by the tabu mechanism
(tabu tenure = 1), then confChange[x] = 0.

Proof: If at the current local search step, x is forbidden to flip by the tabu mecha-
nism with tabu tenure = 1, then x is the variable that just be flipped at last step
(confChange[x] would be set to be 0); since there is no flips between last step and the
current step, confChange[x] would be still 0 when selecting the variable to flip at the
current step.

Remark 1. The reverse of Proposition 1 is not necessarily true.

According to Proposition 1 and Remark 1, we conclude that the forbidding strength
of the CC strategy is stronger than that of the tabu mechanism (tabu tenure = 1).
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6.2 Promising Decreasing Variable vs. Configuration Checking

Recently, a deterministic exploitation strategy based on promising decreasing variables
(PDV) was introduced in the G2WSat algorithm [12]. This strategy can in some way
handle the cycling problem of local search algorithms for SAT, and has been used in
most winning local search solvers in the recent SAT competitions.

The following definitions are taken from [12]: A variable is said decreasing if flip-
ping it would decrease the number of unsatisfied clauses. Let x and y be variables,
x 6= y, x is not decreasing. If it becomes decreasing after y is flipped, then we say that
x is a promising decreasing variable after y is flipped. Let x be a promising decreasing
variable after some variable is flipped. If x is always decreasing after one or more other
moves, it is always promising. We use score(x) to denote the difference of the number
of satisfied clauses by flipping x. Then a variable x is decreasing iff score(x) > 0.

Proposition 2. For a given variable x, if x is a promising decreasing variable, then
confChange[x] = 1.

Proof: The proof is given by deduction.
(a) Becoming a promising decreasing variable. If x becomes a promising decreasing
variable after flipping another variable y, then we conclude y ∈ N(x). Otherwise y is
independent with x and flipping y does nothing to score(x). Since y ∈ N(x), along
with flipping y, confChange[x] would be set to be 1.
(b) Remaining a promising decreasing variable. For a promising decreasing variable
x, if x remains promising decreasing, then we conclude that x has not been flipped
after the last time it became a promising decreasing variable. Otherwise, because x
is decreasing, i.e., score(x) > 0, flipping x would make score(x) < 0 (flipping x
would make score(x) to be its opposite number); this means x is no longer a decreasing
variable, and thus not a promising decreasing variable. Since x has not been flipped
after it becoming a promising decreasing variable, recalling only flipping x would set
confChange[x] to 0, so confChange[x] remains 1.

Remark 2. The reverse of Proposition 2 is not necessarily true.

To see this, consider a variable x with score(x) < 0, x is flipped (for example,
in a random step). Then score(x) > 0, i.e., x becomes decreasing. However, x does
not become a promising decreasing variable, because x becomes decreasing by flip-
ping itself, rather than another variable. Afterwards, a variable y ∈ N(x) is flipped
(confChange[x] would be set to 1), which may keep score(x) > 0. This still does not
make x become a promising decreasing variable. Actually, in order to make x a promis-
ing decreasing variable, there are two necessary phases: (1) making score(x) < 0
again; (2) x becomes decreasing by flipping one of its neighbors.

According to Proposition 2 and Remark 2, we conclude that the forbidding strength
of the CC strategy is not so strong as that of the PDV strategy.

6.3 Experimental Study for Comparing Forbidding Strength

As stated above, the forbidding strength of the CC strategy sits between tabu and PDV.
An experimental study for comparing the forbidding strengths of these three strategies
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is conducted as follows. We use the following notations: B = {x|∆w(x) > 0 and x is
forbidden to flip}, and S = {x|∆w(x) > 0}.

We run CWcc, CWtabu and CWpdv on each instance 10 times within maxSteps =
108. For each run of these algorithms, the ratio |B|

|S| (which corresponds to the forbidding

strength) averaged over all steps are computed, and the mean values of |B|
|S| over all runs

on all instances for each instance class are reported in Table 4. We do not perform
experiments on the ais12 instance because CWcc finds a solution in a few steps, and the
computed statistical data can not reflect its forbidding strength.

Table 4 shows that the mean values of |B|
|S| of CWcc are exactly between those of

CWtabu (tt <= 3) and CWpdv , which indicates the forbidding strength of CWtabu

is weaker than that of CWcc, which in turn weaker than CWpdv . This observation is
consistent with our formal analysis on the forbidding strength of the three strategies.
From the viewpoint of striking a balance between exploration and exploitation in local
search, CC seems better than PDV or tabu.

Instance
CWtabu(tt=1) CWtabu(tt=3) CWcc CWpdv

|B|
|S|

|B|
|S|

|B|
|S|

|B|
|S|

3SAT-560vars(10 formulas) 11.28% 28% 57% 85.7%
3SAT-2000vars(10 formulas) 7.78% 28.34% 81.92% 93.26%
satQG(10 formulas) 9.42% 23.3% 26.4% 76.87%
bw large.d 2.89% 11.42% 81.39% 91.79%
Table 4. Forbidding strength comparison of CWcc with CWtabu and CWpdv

Based on the analysis above, it is clear that the CC strategy provides an interest-
ing alternative to the tabu mechanism and the PDV strategy for handling the cycling
problem in SAT local search algorithms. Also, we provide a framework for handing the
cycling problem, in which forbidding strength naturally corresponds to ’diversification’
of local search. We believe that studying different strategies in a same framework is
helpful for developing new strategies that can handle the cycling problem better.

7 Conclusions and Future Work

The configuration checking (CC) strategy was recently proposed to deal with the cy-
cling problem of local search [3]. By reducing local structure cycles, the CC strategy
can handle the cycling problem well. We have utilized the CC strategy to design two
algorithms CWcc and ANGScc for SAT and weighted MAX-2-SAT respectively. Fur-
thermore, we have improved CWcc by a clause weight smoothing mechanism, resulting
in SWcc. The CC strategy in the context of SAT solving remembers each variable’s con-
figuration (truth value of all its neighbors), and prevents a variable from being flipped
if its configuration has not been changed since its last flip.

We emphasize that in order to demonstrate the effectiveness of the CC strategy
clearly, we keep the algorithms simple, and the programming skill is rather naive. Even
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so, the power of the CC strategy makes them achieve state-of-the-art performance. The
experiments on random 3-SAT instances indicate that SWcc is better than TNM, the
best solver on random instances in SAT competition 2009. And ANGScc is competitive
with the state-of-the-art local search solver for weighted MAX-2-SAT.

Also, we have conducted some further analysis and experiments to compare the CC
strategy with two other significant methods for handling the cycling problem: the tabu
mechanism and the promising decreasing variable exploitation strategy. The forbidding
strength of the CC strategy stands in the middle of the tabu mechanism and the PDV
strategy, and is neither too weak, nor too strong. The effectiveness of the CC strategy
is clearly shown by the fact that CWcc significantly outperforms CWtabu and CWpdv ,
and ANGScc significantly outperforms ANGStabu. Thus, the CC strategy is a promising
alternative strategy for handling the cycling problem.

As for future work, we would like to apply the configuration checking idea to other
combinatorial search algorithms. In particular, given the success of SWcc in this work,
we believe that it may further improve the state of the art in SAT solving if we combine
the proposed CC strategy for SAT to some stronger SAT local search solver. A more
general direction is to exploit the circumstance information of solution components to
design more efficient algorithms for combinatorial problem.
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