

 3rd HIPEAC Industrial Workshop

TUsing Fine Grain Multithreading
 for Energy Efficient Computing

Alex Gontmakher, Technion
Avi Mendelson, Intel Labs
Assaf Schuster, Technion

 3rd HIPEAC Industrial Workshop

TInstruction Level Parallelism
Program Dataflow Execution

Practical Execution:
constrained by processor resources

Out-of-order
processing

 3rd HIPEAC Industrial Workshop

THow Out-of-Order Works

● Sliding window over the program
– Independent instructions within the

window executed

● Much of the parallelism is
beyond the horizon!
– Good for extremely fine granularity!

● All instructions within the window
must be checked for dependencies
– High complexity

– Increased energy consumption

 3rd HIPEAC Industrial Workshop

T Who's The/A Culprit?

MIPS Alpha
R5K R10K 21164 21264

Pipeline InO OOO InO OOO
SPECInt95 5.5 10.1 15.4 27.7
SPECFP95 5.5 9.71 21.1 58.7
Power (W) 10 30 28 91
Clock Rate 200 250 500 500

0.35 0.35 0.35 0.35
Transistors 3.6M 6.7M 9.3M 15.2M
Transistors (Logic)0.8M 2.3M 2.6M 6M
Physical Regs 64 80

Technology (μ)

2x
3x

 3rd HIPEAC Industrial Workshop

TRelated Work

● S. Hily, A. Seznec: Out-of-order execution may not
be cost-effective on SMT processors
– Single thread: inorder 46% slower than OOO

– 4 threads: inorder only 15% slower than OOO

● SUN's Niagara processor:
Massive SMT support with inorder pipelines,
especially for low-power computing (throughput-
oriented)

 3rd HIPEAC Industrial Workshop

TThread Based Parallelism
Coarse Granularity Fine Granularity

Parallelism expressed
during compilation
– Communication through

shared variables

– OS-based runtime support

Relatively high
threading overhead
– Good only for coarse

granularity!

 3rd HIPEAC Industrial Workshop

TThe Main Idea
Inthreads

Inthreads: An extremely lightweight threading
mechanism
– Hardware-based runtime support

– Communication through shared registers

Medium-level granularity
– Beyond the horizon for OOO

– Too fine-grain for regular threads

Regular Threads

 3rd HIPEAC Industrial Workshop

TInthreads: Programming Model
Lightweight architecture

– Fixed number of threads

– Shared registers

– Synchronization instructions

Code regions explicitly belong to specific threads
– Opportunity for better compiler optimizations

Fits within a function call frame. Function calls?
– inlining

– suspendsuspend/resumeresume

 3rd HIPEAC Industrial Workshop

TInthreads: Programming Model 2
● Threads share the registers cooperatively

– Thread-private variables use different registers
in each thread

– Shared variables must be allocated to same
register in all threads

– Accesses to shared variables must be
protected by synchronization

● Memory (+register) consistency model:
Data-Race-Free-1 (DRF1)

– Software: no data races
– Processor: obeys instruction ordering

 3rd HIPEAC Industrial Workshop

TInthreads vs. SMT: Fast Comm

CPU

Thread 0:

MEM

SMT

LD A[N1]

LD A[N1]

ST S1
ST S1

notify

notify

wait wait

LD S1

LD S1

CPU MEM
LD A[N1]

LD A[N1]

ST S1
ST S1

notify

wait

LD S1

LD S1

SMT+Synch

P1=S1

P1 = S1

CPU MEM
LD A[N1]

LD A[N1]
notify

wait

Inthreads

P1=S1

S1=A[N1]
notify()

wait()
P1 = S1

Thread 1:

 3rd HIPEAC Industrial Workshop

TInthreads ISA by Example

...
inth.wait 1inth.wait 1
load R4, [R4]
mov R11, R4
inth.set 1inth.set 1
...
mov R10, R11
inth.set 2inth.set 2
inth.haltinth.halt

inth.start 1inth.start 1
...

inth.wait 1inth.wait 1
load R4, [R4]
mov R10, R4
inth.set 1inth.set 1
...

inth.wait 2inth.wait 2
store R10,[R1]
...

Mutex

More Instructions:
inth.clrinth.clr – clear a condition variable
inth.killinth.kill – kills a given thread

Condition
Registers

0C0

0C1

1C2

0C31

......

 3rd HIPEAC Industrial Workshop

THow lightweight it really is?
● Two independent tasks executed in parallel

– Expected top speedup: 2x

– Speedup 1x => Overhead is the same as task size

Task size

3 orders of magnitude
less overhead

 3rd HIPEAC Industrial Workshop

TPipeline Outline

F
et

ch
F

et
ch

F
et

ch

D
ec

od
e

D
ec

od
e

D
ec

od
e

R
en

am
e

Is
su

e

O
O

O
E

xe
cu

tio
n

C
om

m
it

Is
su

e

In
O

E
xe

cu
tio

n

W
ai

t

Is
su

e

In
O

E
xe

cu
tio

n

Out Of
Order

Inorder

Inorder/
MT

F
et

ch

 3rd HIPEAC Industrial Workshop

T

PC

Fetch Stage

IC
ac

he

Fetch
Buffer

Jump Address

T
1
 Fetch

Buffer

T
N
 Fetch

Buffer

T
0
 Fetch

Buffer

PC
0

PC
1

PC
N

S
el

ec
t

MIX

Disabled ThreadsWith banking, loading from 2 addresses is reasonable

 3rd HIPEAC Industrial Workshop

TInstruction Issue
Out-of-order

● Any insn can issue
● Long queue

Inorder

● Instructions
 issue in-order
● Short queue

● Instructions in each Q issue in-order
● Set of short queues
● IQs of inactive threads disabled by clock gating

Inorder + Inthreads

No conflicts (DRF1)
Any two

insns can
conflict

MIX

Any two
insns can
conflict

Any two
insns can
conflict

 3rd HIPEAC Industrial Workshop

TDynamic Instruction Mix

Inthreads ISA insns

Committed
instructions

Total
(fetched)
instructions

Inorder+Inthreads: less unnecessary work!

 3rd HIPEAC Industrial Workshop

TExecution Time

● Inorder is much worse than OOO...
● But Inorder+Inthreads isn't!

– Although by different methods, Inorder+Inthreads
achieves the same latency-tolerance as OOO

 3rd HIPEAC Industrial Workshop

TEnergy, Energy-Delay Results
Processor mostly idle, waiting

for memory. Little progress
occurs, but power is consumed.

E
n

er
g

y
E

D

 3rd HIPEAC Industrial Workshop

THow IPC Affects Energy
● Divide execution into periods 1000 cycles long
● For each period, plot the energy consumed
as a function of the IPC

 3rd HIPEAC Industrial Workshop

TConclusions

 OOO: fast single task ↔ high-power

 MT: energy efficient ↔ throughput-oriented

 Inthreads:

Shared Register Threads + Data-Race-Free-1

=

Best of both

 3rd HIPEAC Industrial Workshop

TQuestions

