

Empirical Methods in Natural Language Processing (EMNLP 2018) 5th Workshop on Argument Mining (ARGMINING 2018)

Cross-Lingual Argumentative Relation Identification: from English to Portuguese

Gil Rocha, Christian Stab, Henrique Lopes Cardoso and Iryna Gurevych

LIACC/DEI, Faculty of Engineering, University of Porto

Ubiquitous Knowledge Processing Lab (UKP-TUDA), Department of Computer Science, Technische Universitat Darmstadt

01/11/2018

LIACC

AM Tasks

Raw input text

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voinptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimati sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voinptua. At vero eos et accusam et justo duo dolores et ea rebum.

Argument components

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et doiore magna aliquyam erat, sed diam voluptua. At ver eos es taccusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet. consettur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

- Separate argumentative from non-argumentative text units
- Identification of argument component boundaries

Component types adipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stec dita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet. Consettur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ac rebum.

- Argumentative role of argument components
- e.g. conclusions, claims, different types of evidence, etc.

- Focus on AM subtask of Argumentative Relation Identification [Peldszus and Stede, 2015]
- Assumption: ADUs are given as input (no ADU classification is assumed)
- Task formulation:
 - Given two ADUs determine whether they are argumentatively linked or not

AM for Less Resourced Languages

- Resources are scarce in terms of:
 - Annotations of arguments
 - Challenging and time-consuming task [Habernal et al., 2014]
 - Proposed Approach: Cross-Language Learning
 - Available tools and annotated resources for auxiliary NLP tasks
 - Heavily engineered NLP pipelines tend to underperform
 - Proposed Approach: (Multi-Lingual) Word Embeddings + Deep Neural Network Architectures

Cross-Language Learning for AM

• **Proposed approach:** explore existing corpora in different languages to improve the performance of the system on less-resourced languages

• Hypothesis:

 High-level semantic representations that capture the argumentative relations between ADUs can be independent of the language

• Contributions:

- First attempt to address the task of Argumentative Relation Identification in a cross-lingual setting
- Unsupervised cross-language approaches suited for less-resourced languages

Related Work

Mono-Lingual Setting

- Argumentative Relation Identification
 - Subtask addressed in isolation
 - Feature-based approach [Nguyen and Litman, 2016]
 - NN architecture (LSTMs for sentence encoding) [Bosc et al., 2016; Cocarascu and Toni, 2017]
 - Jointly modeled with previous subtasks
 - Feature-based approach and ILP [Stab and Gurevych, 2017]
 - End-to-End AM System [Eger et al., 2017]
 - Encoder-decoder formulation employing a pointer network [Potash et al., 2017]
- Discourse Parsing
 - NN architecture: Sentence Encoding using word embeddings + lexical + syntactic info) [Braud et al., 2017; Li et al., 2014]
- Recognizing Textual Entailment
 - Different sentence encoding techniques
 - Recurrent [Bowman et al., 2015a] and Recursive neural networks [Bowman et al., 2015a]
 - Complex aggregation functions [Rocktaschel et al., 2015; Chen et al., 2017; Peters et al., 2018]

Related Work

Cross-Lingual Setting

- Cross-Language Learning: obtain an intermediate and shared representation of the data that can be employed to address a specific task across different languages
- Current approaches can be divided in:
 - Projection
 - Direct Transfer
 - Training only on the source language
 - Re-Training on the target language
- Related tasks:
 - Textual Entailment and Semantic Similarity
 - Sequence Tagging approaches
 - NER, PoS Tagging, Sentiment classification, Discourse parsing
 - Argumentation Mining
 - Argument Component Identification and Classification [Eger et al., 2018a]
 - Argumentative Sentence Detection (PD3) [Eger et al., 2018b]

Genre

Argument model

Granula rity

AM Corpora with relations

Lang	Corpus	#Docs	#Rel	#None	#Support	#Attack	Arg. Schema	Туре
EN	Argumentative Essays	402	22,172	17,923	3,918	331	Premise, Claim, Major Claim	Essays
РТ	ArgMine	75	778	621	153	4	Premise, Claim	Opinion Articles

Table 2. Corpora Statistics: Argumentative Essays (EN) [Stab and Gurevych, 2017]and ArgMine corpus (PT) [Rocha and Lopes Cardoso, 2017]

Lang.	Source ADU	Target ADU	Label
	Teachers are not just teachers, they are also	In conclusion, there can be no school	support
EN	friends and conseilieurs	without a teacher	support
LIN	computers need to be operated by people	no one can argue that technological	none
	computers need to be operated by people	tools are must-haves for the classroom	none
	Durante a última década, a saúde, o meio ambiente, a		
	biodiversidade, assim como a evolução humana tem sido	O século XXI é sem sombra de dúvida	
EN Freachers are not just teachers, friends and conseilier Computers need to be operated Computers need to be operated Durante a última década, a saúde, or biodiversidade, assim como a evoluçi temas recorrentes em todos os meior (During the last decade, health biodiversity, as well as human evo recurring topics in all sorts Seria da mais elementar prudêm precisar de lhe pedir di (It would be most prudem (It would be most prudem)	temas recorrentes em todos os meios de comunicação.	a era da Biologia	support
	(During the last decade, health, environment,	(The 21st century is undoubtedly	support
DT	biodiversity, as well as human evolution have been	the era of biology)	
F I	recurring topics in all sorts of media)		
	Seria da mais elementar prudência não voltar a	O fluxo de migrantes agravou o peso do	
	precisar de lhe pedir dinheiro	euroceptismo nos governos	none
	(It would be most prudent	(The flow of migrants has increased the	none
	not to need asking it money again)	weight of euroscepticism in governments)	

Table 3. Annotated examples extracted from the corpora

Data Preparation

- Input: text annotated with argumentative content at the token level
- Output: ADU pairs annotated with labels: None, Support and Attack
- Procedure:
 - For each pair of ADUs $\langle A_1, A_2 \rangle$ in the same paragraph:
 - If A_1 is connected to A_2 with label L, with $L \in \{Support, Attack\}$
 - use label L
 - Otherwise,
 - use label None

Experimental Setup

Methods

- Baselines
 - BoW encoding + Logistic Regression
 - Enhanced Sequential Inference Model (ESIM) [Chen et al., 2017]
 - AllenNLP TE model [Peters et al., 2018]
- Explored architectures
 - Different ways of encoding the sentence
 - Sum of Word Embeddings
 - LSTMs and BiLSTMs
 - Convolutional
 - Conditional Encoding
- Dealing with unbalanced datasets
 - Random Undersampling
 - Cost-Sensitive Learning

Results: In-Language EN

- NN architectures outperform baselines
- State-of-the-Art RTE models perform poorly
 - Tasks are conceptually different
 - Models are too complex for the relatively small amount of data
- Skewed nature of the dataset plays an important role

	Model	Macro-F1	F1-None	F1-Supp
	Random	.447	.625	.269
Baselines	Peters et al. (2018)	.512	.903	.121
Duschnes	Chen et al. (2017)	.577	.879	.275
	BoW+LR	.604	.898	.311
	LSTM	.606	.877	.336
	BiLSTM	.624	.867	.381
	Conv1D	.634	.879	.390
	Inner-Att	.621	.882	.360

Results: In-Language EN

- CSL and RU do not improve overall performance
- Simple BoW + LR obtains better macro f1-score
- Results are worst than existing SOTA work:
 - [Potash et al., 2017] reports
 0,767 macro f1-score
 - Notice that existing SOTA work:
 - Do not scaled for cross-lingual settings targeting less-resourced languages
 - Modeled the problem differently

Model	Macro-F1	F1-None	F1-Supp		
Random	.447	.625	.269		
Peters et al. (2018)	.512	.903	.121		
Chen et al. (2017)	.577	.879	.275		
BoW+LR	.604	.898	.311		
LSTM	.606	.877	.336		
BiLSTM	.624	.867	.381		
Conv1D	.634	.879	.390		
Inner-Att	.621	.882	.360		
Cost Sensitive Learn	ning				
BoW+LR	.641	.875	.407		
LSTM	.616	.822	.410		
BiLSTM	.634	.835	.434		
Conv1D	.631	.832	.430		
Inner-Att	.606	.822	.410		
Random Undersam	pling				
BoW+LR	.574	.748	.401		
LSTM	.566	.734	.399		
BiLSTM	.609	.796	.422		
Conv1D	.598	.786	.410		
Inner-Att	.586	.775	.397		

Results: In-Language PT

- Similar trend compared to In-Language EN results
 - CSL and RU are more effective to increase the scores on the Support label

		In-	Langua	ge
	Model	Macro	None	Supp
Г	Random	.448	.613	.283
Development	BoW+LR	.457	.888	.025
Baselines –	Peters et al. (2018)	.485	.887	.082
L	Chen et al. (2017)	.522	.856	.188
	LSTM	.489	.868	.110
	BiLSTM	.510	.840	.180
	Conv1D	.459	.882	.035
	Inner-Att	.534	.764	.305
	Cost Sensitive Learn			
	BoW+LR	.520	.846	.193
	LSTM	.496	.680	.312
	BiLSTM	.523	.786	.259
	Conv1D	.503	.827	.178
	Inner-Att	.479	.637	.321
	Random Undersam	oling		
	BoW+LR	.264	.191	.337
	LSTM	.494	.668	.321
	BiLSTM	.464	.581	.348
	Conv1D	.423	.554	.292
	Inner-Att	.487	.621	.352

Results: Cross-Language EN to PT

• Cross-Language scores are close to in-language scores (better in some settings)

	In-Language			Direct Transfer			Projection			
Model	Macro	None	Supp	Macro	None	Supp	Macro	None	Supp	
LSTM	.489	.868	.110	.461	.887	.036	.462	.884	.041	
BiLSTM	.510	.840	.180	.463	.870	.057	.466	.877	.055	
Conv1D	.459	.882	.035	.459*	.880	.038	.462*	.884	.039	
Inner-Att	.534	.764	.305	.454	.883	.025	.456	.882	.030	
Cost Sensi	tive Learn	ing		•						
LSTM	.496	.680	.312	.489	.870	.109	.493	.849	.137	
BiLSTM	.523	.786	.259	.485	.861	.109	.503	.845	.162	
Conv1D	.503	.827	.178	.497	.854	.141	.494	.841	.147	
Inner-Att	.479	.637	.321	.477	.867	.088	.484*	.844	.123	
Random U	Random Undersampling									
LSTM	.494	.668	.321	.494*	.870	.118	.495*	.859	.131	
BiLSTM	.464	.581	.348	.500*	.856	.145	.512*	.865	.158	
Conv1D	.423	.554	.292	.499*	.855	.144	.492*	.849	.134	
Inner-Att	.487	.621	.352	.482	.878	.087	.495*	.861	.128	

Results: Cross-Language EN to PT

• CSL and RU consistently improves the overall macro f1-score

	In-Language			Direct Transfer			Projection		
Model	Macro	None	Supp	Macro	None	Supp	Macro	None	Supp
LSTM	.489	.868	.110	.461	.887	.036	.462	.884	.041
BiLSTM	.510	.840	.180	.463	.870	.057	.466	.877	.055
Conv1D	.459	.882	.035	.459*	.880	.038	.462*	.884	.039
Inner-Att	.534	.764	.305	.454	.883	.025	.456	.882	.030
Cost Sensi	tive Learn	ing	·						
LSTM	.496	.680	.312	.489	.870	.109	.493	.849	.137
BiLSTM	.523	.786	.259	.485	.861	.109	.503	.845	.162
Conv1D	.503	.827	.178	.497	.854	.141	.494	.841	.147
Inner-Att	.479	.637	.321	.477	.867	.088	.484*	.844	.123
Random U	Random Undersampling								
LSTM	.494	.668	.321	.494*	.870	.118	.495*	.859	.131
BiLSTM	.464	.581	.348	.500*	.856	.145	.512*	.865	.158
Conv1D	.423	.554	.292	.499*	.855	.144	.492*	.849	.134
Inner-Att	.487	.621	.352	.482	.878	.087	.495*	.861	.128

Results: Cross-Language EN to PT

• Projection approach >> Direct Transfer (in most of the settings)

	In-Language			Direct Transfer			Projection			
Model	Macro	None	Supp	Macro	None	Supp	Macro	None	Supp	
LSTM	.489	.868	.110	.461	.887	.036	.462	.884	.041	
BiLSTM	.510	.840	.180	.463	.870	.057	.466	.877	.055	
Conv1D	.459	.882	.035	.459*	.880	.038	.462*	.884	.039	
Inner-Att	.534	.764	.305	.454	.883	.025	.456	.882	.030	
Cost Sensi	tive Learn	ing						•		
LSTM	.496	.680	.312	.489	.870	.109	.493	.849	.137	
BiLSTM	.523	.786	.259	.485	.861	.109	.503	.845	.162	
Conv1D	.503	.827	.178	.497	.854	.141	.494	.841	.147	
Inner-Att	.479	.637	.321	.477	.867	.088	.484*	.844	.123	
Random U	Random Undersampling									
LSTM	.494	.668	.321	.494*	.870	.118	.495*	.859	.131	
BiLSTM	.464	.581	.348	.500*	.856	.145	.512*	.865	.158	
Conv1D	.423	.554	.292	.499*	.855	.144	.492*	.849	.134	
Inner-Att	.487	.621	.352	.482	.878	.087	.495*	.861	.128	

Error Analysis

- Text genre shift:
 - Linguistic indicators
 - Prevail in Argumentative Essays (EN) [Stab and Gurevych, 2017]
 - Ambiguous and rare in ArgMine Corpus (PT) [Rocha and Lopes Cardoso, 2017]
 - ArgMine Corpus (PT) is more demanding in terms of common-sense knowledge and temporal reasoning

 ADU_S : "Greece, last year, tested the tolerance limits of other European taxpayers" ADU_T : "The European Union of 2016 is no longer the one of 2011."

- Distinction between linked and convergent arguments
 - During data preparation both cases were considered as convergent

Conclusions

- Competitive results can be obtained using unsupervised language adaptation when compared to in-language supervised approach
 - Cross-lingual transfer loss is relatively small (always below 10% macro f1)
 - In some settings cross-language approaches outperform in-language approaches
- Higher-level representations of argumentative relations can be obtained that can be transferred across languages
 - **Future work:** Evaluate approach in other languages
- Existing corpora poses many challenges
 - Annotations using different argument models
 - Cross-lingual approaches are hard to explore (requires extra pre-processing steps)
 - Solution: Frame the problem as MTL; PD3 approach [Eger et al., 2018b]
 - Domain shift needs to be investigated in more detail
 - Future work: employ MTL and/or adversarial training approaches

Questions?

Code available:

https://github.com/GilRocha/emnlp2018-argmin-workshop-xLingArgRelId

Contact:

<u>Gil Rocha</u>

Artificial Intelligence and Computer Science Lab (LIACC) Faculty of Engineering, University of Porto (FEUP) Email: gil.rocha@fe.up.pt