

ArguminSci A Tool for Analyzing Argumentation and Rhetorical Aspects in Scientific Writing

Anne Lauscher, Goran Glavaš and Kai Eckert@ArgMining 2018

The exponential growth of scientific output from 1980 to 2012 (Bornmann and Lutz, 2015)

Anne Lauscher, ArguminSci

Computational models are already in place for many rhetorical analysis tasks ...

- citation context analysis (e.g., Jha et al., 2017)
- discourse analysis (e.g., Teufel et al., 1999; Liakata et al., 2010)

• ...

Computational models are already in place for many rhetorical analysis tasks ...

- citation context analysis (e.g., Jha et al., 2017)
- discourse analysis (e.g., Teufel et al., 1999; Liakata et al., 2010)
- ...

... and downstream applications.

- Summarization (e.g., Cohan and Goharian, 2015)
- Research trend prediction (e.g., McKeown et al., 2016)
- Semantometrics (Herrmannova and Knoth, 2016)
- ...

Scientific publications are inherently argumentative (Gilbert, 1976)

"tools of persuasion"

(Gilbert, 1977)

Carefully composed of different rhetorical layers (*"Scitorics"*)

Anne Lauscher, ArguminSci

"In general, our OMR preserves the high frequency content of the motion quite well, since inverse rate control is directed by Jacobian values." "In general, our OMR preserves the high frequency content of the motion quite well [claim], since inverse rate control is directed by Jacobian values [data]." "In general, our OMR preserves the high frequency content of the motion quite well [claim], since inverse rate control is directed by Jacobian values [data]."

- Subjective Aspect:
- Discourse Role:
- Summary Relevance:

advantage

- outcome
- relevant (Fisas et al., 2016)

ArguminSci aims to support a holistic analysis of scientific publications in terms of scitorics

- 1. Motivation
- 2. System Overview
- 3. Conclusion

- 1. Motivation
- 2. System Overview
 - $\circ~$ Annotation Tasks and Data Set
 - Annotation Models
 - Interfaces
- 3. Conclusion

System Overview: Annotation Tasks and Data Set

Annotation Tasks

Discourse Role Classification Background, Challenge, Approach, Future Work, Outcome, Unspecified

Subjective Aspect Classification Advantage, Disadvantage, Novelty, Common Practice, Limitations, None

Summary Relevance Classification Totally irrelevant, Should not appear, May appear, Relevant, Very relevant, None

Citation Context Identification B-Citation Context, I-Citation Context, Outside

Argument Component Identification

B-I-O annotation scheme with three types of argumentative components: Own claim, Background claim, and Data

Dr. Inventor Corpus (Fisas et al., 2016)

Scientific discourse roles Background, Challenge, Approach, Future Work, Outcome

Subjective aspects and novelty classes Advantage, Disadvantage, Novelty, Common Practice, Limitations

Summary relevance grading + Summaries Totally irrelevant, should not appear, may appear, relevant, very relevant

Citation purpose Criticism, Comparison, Basis, Use, Substantiation, Neutral

Extension of the corpus with fine-grained argumentative structures (Lauscher et al. 2018, derived from Toulmin, 2003; Dung 1995; Bench-Capon, 1998)

"SSD is widely adopted in games, virtual reality, and other realtime applications due to its ease of implementation and low cost of computing."

System Overview: Annotation Models

Model Architecture Token-level tasks

Given a sequence of inputs **x**, assign a sequence of tags **y**.

Model Architecture Sentence-level tasks

Model Performances

Granularity	Task	F1 (%)
Token-level	Argument Component Identification	43.8
	Citation Context Identification	47.0
Sentence-level	Discourse Role Classification	42.7
	Subjective Aspect Classification	18.8
	Summary Relevance Classification	33.5

Evaluated on a held-out test set (2874 sentences)

Model Performances

Granularity	Task	F1 (%)
Token-level	Argument Component Identification	43.8
	Citation Context Identification	47.0
Sentence-level	Discourse Role Classification	42.7
	Subjective Aspect Classification	18.8
	Summary Relevance Classification	33.5

Evaluated on a held-out test set (2874 sentences)

Models can be exchanged

Anne Lauscher, ArguminSci

System Overview: ArguminSci's Interfaces

System Overview: ArguminSci's Interfaces

- Command Line Interface
- RESTful Application Programming Interface
- Web Application

```
C:\Users\anlausch\PycharmProjects\ArgDemo>python arguminsci.py -h
usage: arguminsci.py [-h] [--argumentation] [--discourse] [--aspect]
[--citation] [--summary]
inputfile outputfolder
```

Analyze Argumentation and Rhetorical Aspects in Scientific Writing.

positional arguments: inputfile The name of the textual file containing the input text. outputfolder The name of the output folder where the output should be stored.

optional arguments:

-h,help	show this help message and exit
argumentation	Extract argument components.
discourse	Analyze discourse roles.
aspect	Analyze subjective aspects.
citation	Extract citation contexts.
summary	Assign summary relevance.

ArguminSci

Analyze Argumentation and Rhetorical Aspects in Scientific Writing.

Just copy your text in the input field below and submit.

Insert scientific text here..

ArguminSci

Analyze Argumentation and Rhetorical Aspects in Scientific Writing.

Just copy your text in the input field below and submit.

Argument Components	Discourse Categories	Subjective Aspects	Citation Contexts	Summary Relevance	
this paper aims to produce f	luid simulations with a hig	h degree of spatial ada	ptivity . we desire to en	nable a simulator to focus	Background
its computational resources	on the visually interesting	regions of a fluid flow ,	while remaining comp	outationally efficient and	
avoiding common artifacts o	due to a spatially adaptive	pressure solve . previou	is approaches have ma	de great strides towards	Challenge
this goal , but they often ex	nibit visual artifacts , a lack	of computational robu	stness , or an unaccept	tably hefty computational	Approach
expense . the groundbreakir	ng work of Losasso et al . [2004] introduced an o	ctree for spatial adapti	vity , but it suffers from	Approach
spurious flows at T-junctions	s . finite volume methods	batty et al . 2010] repa	air these spatial artifact	ts at the expense of solving	Outcome
a significantly larger system	of equations and sacrificir	ig computational stabili	ity near poorly-shaped	elements . furthermore ,	-
many existing methods still	are not truly spatially adap	tive in the sense that th	neir computational con	nplexity is still tied to a	Future Work
uniform grid or spatial para	neter				

Insert scientific text here..

POST	•	localhost:8000/predict?api_mode=True&text=Our model performs best
Pretty	Raw	Preview JSON v
1 - {		
2 ⊧	"aspe	ct": [🚍],
26 ⊧	"summ	ary": [[]],
50 1	"disc	ourse": [],
74 -	"argu	mentation": [
75 -	L	r
70 +		l "our"
78		"Token Label.BEGIN OWN CLAIM"
79		n.
80 -		
81		"model",
82		"Token_Label.INSIDE_OWN_CLAIM"
83],
84 💌		[
85		"performs",
86		"Token_Label.INSIDE_OWN_CLAIM"
87		
88 -		
89		Dest , "Takan Labal INSIDE OUN CLAIM"
90		1 IOKEN_LADEL.INSIDE_OWN_CLAIM
92 -		1)
93		
94		"Token_Label.OUTSIDE"

- 1. Motivation
- 2. System Overview
- 3. Conclusion

The rhetorical aspects of scientific writing should be studied holistically in order to understand a publication, i.e. a scientific argument, as a whole

ArguminSci illustrates this idea by providing multiple rhetorical analysis perspectives

The rhetorical aspects of scientific writing should be studied holistically in order to understand a publication, i.e. a scientific argument, as a whole

ArguminSci illustrates this idea by providing multiple rhetorical analysis perspectives

FW: Expose training phase, extend with other annotation layers and schemes

The rhetorical aspects of scientific writing should be studied holistically in order to understand a publication, i.e. a scientific argument, as a whole

ArguminSci illustrates this idea by providing multiple rhetorical analysis perspectives

FW: Expose training phase, extend with other annotation layers and schemes

https://github.com/anlausch/ArguminSci http://data.dws.informatik.uni-mannheim.de/arguminsci/

Thank you

Anne Lauscher, ArguminSci

T. J. Bench-Capon, "Specification and implementation of Toulmin dialogue game," in *Proceedings of JURIX*, 1998, vol. 98, pp. 5–20.

A. Cohan and N. Goharian, "Scientific article summarization using citation-context and article's discourse structure". *arXiv* preprint arXiv:1704.06619, 2017.

P.H. Dung, "On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games." *Artificial intelligence* vol. 77, no. 2, pp. 321-357, 1995.

S. Eger, J. Daxenberger, and I. Gurevych, "Neural End-to-End Learning for Computational Argumentation Mining," in *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), Vancouver, Canada, 2017, pp. 11–22.

B. Fisas, H. Saggion, and F. Ronzano, "On the Discoursive Structure of Computer Graphics Research Papers.," in LAW@ NAACL-HLT, 2015, pp. 42–51.

B. Fisas, F. Ronzano, and H. Saggion, "A Multi-Layered Annotated Corpus of Scientific Papers.," in LREC, 2016.

G. Nigel Gilbert, "The transformation of research findings into scientific knowledge", *Social Studies of Science*, vol. 6, no. 3-4, pp. 281–306, 1976..

G. Nigel Gilbert, "Referencing as persuasion," Social Studies of Science, vol. 7, no. 1, pp. 113–122, 1977.

D Herrmannova and P Knoth, "Semantometrics: Towards fulltext-based research evaluation", in *Proceedings of the Joint Conference on Digital Libraries (JCDL)*, IEEE/ACM, 2016, pp. 235-236.

R. Jha, A. A. Jbara, V. Qazvinian, and D.R. Radev, "NLP-driven citation analysis for scientometrics.", in *Natural Language Engineering*, 2017, vol. 23., no. 1, pp. 93-130.

C. Kirschner, J. Eckle-Kohler, and I. Gurevych, "Linking the Thoughts: Analysis of Argumentation Structures in Scientific Publications," in Proceedings of the 2nd Workshop on Argumentation Mining held in conjunction with the 2015 Conference of the North American Chapter of the Association for Computational Linguistics – Human Language Technologies (NAACL HLT 2015), 2015, pp. 1–11.

M. Liakata, S. Saha, S. Dobnik, C. Batchelor, and D. Rebholz-Schuhmann, "Automatic recognition of conceptualization zones in scientific articles and two life science applications," *Bioinformatics*, vol. 28, no. 7, pp. 991–1000, Apr. 2012.

A. Lauscher, G. Glavaš, S. P. Ponzetto, and K. Eckert, "Investigating convolutional networks and domain-specific embeddings for semantic classification of citations," in *Proceedings of WOSP* 2017, Toronto, 2017a, vol. tba, p. tba.

A. Lauscher, G. Glavaš, and K. Eckert, "University of Mannheim @ CLSciSumm-17: Citation-Based Summarization of Scientific Articles Using Semantic Textual Similarity," in 2nd Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries 2017 [?], tba, 2017b, p. tba.

S. Teufel and M. Moens, "Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status," *Comput. Linguist.*, vol. 28, no. 4, pp. 409–445, Dec. 2002.

S. Teufel, A. Siddharthan, and C. Batchelor, "Towards discipline-independent argumentative zoning: evidence from chemistry and computational linguistics," in *Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3*, 2009, pp. 1493–1502.

S. Teufel, J. Carletta, and M. Moens, "An annotation scheme for discourse-level argumentation in research articles," in *Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics*, 1999, pp. 110–117.

K. McKeown *et al.*, "Predicting the impact of scientific concepts using full-text features," *J Assn Inf Sci Tec*, vol. 67, no. 11, pp. 2684–2696, Nov. 2016.

S. E. Toulmin, The Uses of Argument. Cambridge University Press, 2003.