Annotation of Scientific Arguments in Terms of Semantic Relations and Argument Schemes

Nancy L. Green

University of North Carolina Greensboro

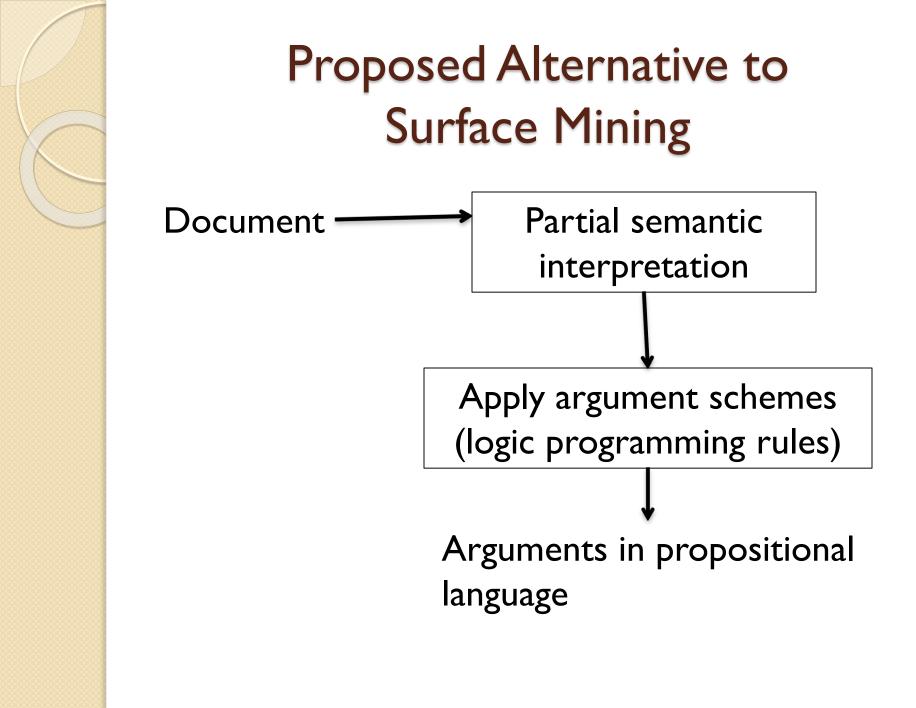
5th Workshop on Argument Mining, EMNLP 2018, Brussels, November I

Our Goal: Argument Mining Full-Text Bio/Biomed Research Articles

- **Argument** = Presentation of author's reasoning for validation by other scientists
- Mining = Inferring type of argument (argument scheme) and its (implicit or explicit) premises/conclusion in propositional form (not text segments)

Example Argument Scheme

Scheme name: Agreement


Premise: A group of individuals I have atypical **phenotype** P (e.g., *a disease*)

Premise: All of the individuals in I have atypical **genotype** M (e.g., *variant gene*)

Conclusion: M may be the **cause of** P (in group I)

Challenges to Surface Mining Arguments in Science Research Pubs

- Premises or conclusion occurring in <u>noncontiguous</u> text segments
- Different arguments occurring in overlapping or <u>embedded</u> text segments
- Implicit premises or conclusion
- Recognizing argument scheme

Propositional Argument Mining Pipeline – Step 1: Partial Semantic Interpretation

• use current and future BioNLP tools (named entity extraction, relation extraction, coreference resolution, ...)

output propositions, e.g.
 have_genotype(group I, 'ITPR I opt/opt')
 have_phenotype(group I, ataxia)

Propositional Argument Mining – Step 2: Apply argument schemes

Argument scheme implemented as Prolog rule:

arg(scheme('Agreement'), premise(have_phenotype(G, P)), premise(have_genotype(G, M)), conclusion(cause(M, P)))

:- group(G), have_phenotype(G, P), have_genotype(G, M).

Example Mined Argument

Scheme: Agreement Premises: have_phenotype(group1, ataxia)), have_genotype(group1, 'ltpr1opt/opt'), Conclusion: cause('ltpr1opt/opt', ataxia)))

Plan of Research

- Identify relevant argument schemes
- Implement them as logic programming rules; prototyped in (Green, 2018)
- Annotate corpus of bio articles:
 - partial semantic interpretation
 - arguments
- Use corpus to evaluate argument mining systems

An Open-Access* Catalog of Argumentation Schemes in In Biomedical Genetics Research Articles (*https://github.com/greennl/BIO-Arg)

Table of Contents Introduction Definitions of domain terminology Ontology of argument schemes: Causation One-group Agreement arguments Method of Agreement Failed Method of Agreement (no Effect) Failed Method of Agreement (no Cause) **Eliminate Candidates** Explanation-based Effect to Cause No Effect to No Cause Consistent with Predicted Effect

Ontology continued on next slide

An Open-Access* Catalog of Argumentation Schemes in In Biomedical Genetics Research Articles (*https://github.com/greennl/BIO-Arg)

Ontology of argument schemes (continued from previous slide) Causation One-group ... Two-group Difference arguments Method of Difference Eliminate Difference Failed Method of Difference Analogy (Causal) **Explanation-based** Consistent Explanation Difference Consistent Explanation Other Classification Confirmation Acknowledgements References

Proposed Method for Annotating Arguments

- Tag source text with <content>elements
- Separately annotate discourse entities and propositions outside of <content>
 - <entity ID="geno I" paraphrase="..." />
 - <prop>have_geno(group1, geno1)</prop>
- Separately annotate arguments in terms of semantic annotations

Example: annotating argument

<argument ID="I" scheme="Agreement"> <premise-list>

<premise prop="have_pheno(group1, pheno1)" />
<premise prop="have_geno(group1,geno1)"/>
</premise-list>

< conclusion

inferred-prop= "cause(genol, phenol, groupl)"

paraphrase="A homozygous mutation on chromosome 6qEI may be the cause of the ataxia-like disorder in the affected mice" /> </argument>

Annotation Experiment

Manually annotated semantics and arguments in Results/Discussion section of one bio/biomed journal article (see https://github.com/greennl/BIO-Arg)

- 27 discourse entities
- 41 propositions
- 15 arguments, 7 schemes
 - 9 implicit conclusions
 - 7 implicit premises

For more information

Open-access catalog of argumentation schemes and sample annotated article: https://github.com/greennl/BIO-Arg

Green, NL. 2018. Towards mining scientific discourse using argumentation schemes. Argument and Computation, 9(2):121-135. DOI 10.3233/AAC-180038.