
IBM Labs in Haifa © 2003 IBM Corporation

Fidgeting Till The Point Of No Return

�Marina Biberstein
Eitan Farchi
Shmuel Ur



IBM Labs in Haifa

© 2003 IBM Corporation2

Table of contents

Background: problems and existing solutions

Fidgeting: why and how

Summary



IBM Labs in Haifa

© 2003 IBM Corporation3

A sample program

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3

� Many possible interleavings
� Only few are generated by 

the test environment

1 1



IBM Labs in Haifa

© 2003 IBM Corporation4

Making things happen – the noise-making tools

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3if (random()>P) 
yield();



IBM Labs in Haifa

© 2003 IBM Corporation5

Making things happen – the noise-making tools

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

L1: print t2

x=3

y=3

if (random()>P) 

yield();

print t1

0



IBM Labs in Haifa

© 2003 IBM Corporation6

Making things happen – the noise-making tools

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

if (random()>P) 

yield();

� Difficult to change order of 
distant events

� Many changes don’t affect 
the outcome

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation7

Noise-making tools: equivalent schedules

if (random()>P) 

yield();

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation8

Noise-making tools: equivalent schedules

if (random()>P) 

yield();

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation9

Noise-making tools: equivalent schedules

if (random()>P) 

yield();

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation10

Noise-making tools: equivalent schedules

if (random()>P) 

yield();

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation11

Alternative Pasts: generating interesting things

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3

x=0 y=0 Initialization

Present

Future



IBM Labs in Haifa

© 2003 IBM Corporation12

Alternative Pasts: generating interesting things

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3

Present

Future



IBM Labs in Haifa

© 2003 IBM Corporation13

Issues
� Time/space requirements
Issues
� How to delay value 

selection?
� What is the smart choice 

of values?

Alternative Pasts: generating interesting things

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

Advantages
� Generates interleavings that 

are significantly different
� Easier to swap distant 

events

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation14

Table of contents

Background: problems and existing solutions

Fidgeting: why and how

Summary



IBM Labs in Haifa

© 2003 IBM Corporation15

Looking for solutions

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1
Advantages:
� More time for values 

to arrive
� Better understanding 

of what values are 
interesting L1: print t2

x=3

y=3

Intuition
� Move value selection to 

a “decision point”

x=0 y=0

??



IBM Labs in Haifa

© 2003 IBM Corporation16

Fidgeting: the basic concepts

� Instructions: broken into two groups
� Can be re-executed: =, +, -, …
� Can’t be re-executed: if, print

� Events:
� Critical events 
� Local events

� Visibility graph: 
� Timing restrictions on events
� Nodes:

� Event
� Event state (raw or processed)

� Edges: timing precedence 

read t
op

vars
read/written

++ t t

t

raw

processed

t = read();

t++;



IBM Labs in Haifa

© 2003 IBM Corporation17

Visibility: When can a value be used?

� Problem:
� Node � reads variable ����
� Node � writes variable ����
� Can � use the value produced by � ?

� Answer: Yes, unless timing restrictions in visibility graph imply that 
� � precedes � , or 
� Another node that writes � intervenes between � and �

� In graph terms:
� There is a path from � to �, or 
� There is a path from � to � that passes through a node writing �

� If r can use value written by w, we say w is visible from r



IBM Labs in Haifa

© 2003 IBM Corporation18

Hiding nodes

� Situation: 
� Node � reads variable ����
� Nodes �, � ‘ write variable ���� and are visible from �
� The value written by w is selected for r

� Problem: make � ‘ invisible
� Solution:

� Add edge (� , � ‘), or 
� Add edges (� ‘, � ) and (�, �) 

� Exists a method that doesn’t introduce cycles



IBM Labs in Haifa

© 2003 IBM Corporation19

Processing node

� Goal: Select the values to be used by node n
� Processing node n:

� If node state is processed – done
� Set node state to processed
� For every variable � read by n

� Select a visible node w that writes �
� Hide all other visible nodes that write �
� Process w

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3

x=0 y=0

??



IBM Labs in Haifa

© 2003 IBM Corporation20

Fidgeting: An outline

� Start executing the tested program
� At each event:

� Create a new raw node
� Add it to graph

� First event in thread: 
� Add edge from create in the parent thread
� Add edges from initialization events

� Otherwise: add edge from the previous event in the thread
� If the instruction cannot be replayed: process the node
� Execute the event, 

� Raw: no intervention
� Processed: for each read variable, use its value as produced by the 

visible write event



IBM Labs in Haifa

© 2003 IBM Corporation21

Fidgeting around

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

x=3

x=0 y=0

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3 L1: print t2

y=3



IBM Labs in Haifa

© 2003 IBM Corporation22

Fidgeting around

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3

1 3



IBM Labs in Haifa

© 2003 IBM Corporation23

Table of contents

Background: problems and existing solutions

Fidgeting: why and how

Summary



IBM Labs in Haifa

© 2003 IBM Corporation24

Summing up

� A new algorithm for generating interesting interleavings
� More aggressive delays that with alternative pasts
� More informed choice of values at decision points

� Especially useful for achieving coverage
� Noise-makers can help delay decision points
� Complexity issues remain to be addressed

� Some optimizations available and should be 
evaluated

x=1

y=1

t1=x

t2=y

if (t1!=1) goto L1

print t1

L1: print t2

x=3

y=3



IBM Labs in Haifa

© 2003 IBM Corporation25

There once was a man who said, “God
Must think it exceedingly odd

If He finds that this tree
Continues to be

When there’s no one about in the Quad.”

“Dear Sir:
Your astonishment’s odd: 

I am always about in the Quad
And that’s why the tree
Will continue to be,

Since observed by, 
Yours faithfully,

God.”



IBM Labs in Haifa

© 2003 IBM Corporation26


