Fidgeting Till The Point Of No Return

» Marina Biberstein
Eitan Farchi
Shmuel Ur

IBM Labs in Haifa © 2003 IBM Corporation

@ IBM Labs in Haifa

Table of contents

Background: problems and existing solutions
Fidgeting: why and how

Summary

2 © 2003 IBM Corporation

@ IBM Labs in Haifa

A sample program

X=1 ® Many possible interleavings

® Only few are generated by
the test environment

| 1

/

t1=x
A 4
t2=y
v
if (t1!=1) goto L1
v

_printﬂ\>

X=3
- —

L1: print t2

3 © 2003 IBM Corporation

@ IBM Labs in Haifa

Making things happen — the noise-making tools

i X=1
» Vv
=1
\
t1=x
» v
2=y
B v
if (t1!=1) goto L1
v
rint t1
- _\>
X=3

<

T
=

@ IBM Labs in Haifa

Making things happen — the noise-making tools

t1=x
v

1

\ if (t1!=1) goto L1

L1: print t2
X=3

y=3

5 © 2003 IBM Corporation

X

<l

Il
—h

Yy

@ IBM Labs in Haifa

Making things happen — the noise-making tools

X=1 ® Difficult to change order of
= t1 distant events
:N} ® Many changes don'’t affect

t1=x
: the outcome
t2=y
) v
if (t1!=1) goto L1
4
printﬂ>
X=3
~——. *
y=3
k ——
L1: print t2

6 © 2003 IBM Corporation

@ IBM Labs in Haifa

Noise-making tools: equivalent schedules

X

| 1

:

t1=x
v
t2=y
4
if (t1!=1) goto L1
4

print t1
v

-
-~ vield): v
y- 4 =3

@ IBM Labs in Haifa

Noise-making tools: equivalent schedules

X=1
v
—\ﬂ\,
t1=x
X=3
t2=
if (t1!=1) goto L1
v

print t1
N anaemop) ;
S e L1: print t2 \
A =3

@ IBM Labs in Haifa

Noise-making tools: equivalent schedules

X=1
v
—\ﬂ\>
t1=x
A 4
K
X=3

/ y=3
if (t1!=1) goto L1
e Cancomoop) ;

print t1

~ yield(); *_
L1: print t2

@ IBM Labs in Haifa

Noise-making tools: equivalent schedules

X

| 1

:

t1=x
t2=

X=3

if (t1!=1) goto L1
v
rint t1

L1: print t2

© 2003 IBM Corporation

@ IBM Labs in Haifa

Alternative Pasts: generating interesting things

,,,,,,,, x=0 Ceee——=m10y=0 Initialization

Present

12—y Future

if (t1!=1) goto L1
v

_printﬂ\>
X=3

d—
L1: print t2

11 © 2003 IBM Corporation

@ IBM Labs in Haifa

Alternative Pasts: generating interesting things

1

T Present

E Future

if (t1!=1) goto L1

X

< I

Il
—

y

v
_printﬂ\>
X=3
v
y=3
.ﬁ'
L1: print t2

12 © 2003 IBM Corporation

@ IBM Labs in Haifa

Alternative Pasts: generating interesting things

X=1 Advantages

® Generates interleavings that
are significantly different

| 1

:

”:X ® Easier to swap distant
2=y events
L 4
if (t1!=1) goto L1
issues i
¢ Fiovetspdelayaqiirements 'p\>
selection? X:S
® What is the smart choice y=3
of values? KE prTthZ

13 © 2003 IBM Corporation

@ IBM Labs in Haifa

Table of contents

Background: problems and existing solutions

Fidgeting: why and how

Summary

14 © 2003 IBM Corporation

@ IBM Labs in Haifa

Looking for solutions —
5 Intuition
2= ©® Move value selection to
X=*1 a “decision point”
)
if (t1!=1) goto L1
Advantages: v
® More time for values rint 1
to arrive %=3

® Better understanding
of what values are
interesting

L1: print t2

15 © 2003 IBM Corporation

@ IBM Labs in Haifa

Fidgeting: the basic concepts

® Instructions: broken into two groups
® Can be re-executed: =, +, -, ...
® Can't be re-executed: if, print

® Events: vars
op read/written

@ Critical events
® Local events £ = read(): read| |t
© Visibility graph: Iy l
» Timing restrictions on events - ++ |t
® Nodes:
® Event
© Event state (raw or processeqd) raw

@ Edges: timing precedence g processed

16 © 2003 IBM Corporation

@ IBM Labs in Haifa

Visibility: When can a value be used?

® Problem:
® Node r reads variable A
® Node w writes variable A
® Can r use the value produced by w?
® Answer: Yes, unless timing restrictions in visibility graph imply that
® r precedes w, or
® Another node that writes A intervenes between w and r
© In graph terms:
® There is a path from r to w, or
® There is a path from w to r that passes through a node writing 4
@ If rcan use value written by w, we say wis visible from r

17 © 2003 IBM Corporation

@ IBM Labs in Haifa

Hiding nodes

® Situation:
® Node r reads variable A
® Nodes w, w' write variable A and are visible from r
® The value written by wis selected for r
® Problem: make w' invisible
® Solution:
® Addedge (r, w'), or
® Add edges (w*, w) and (w, 1)
@ Exists a method that doesn’t introduce cycles

18 © 2003 IBM Corporation

@ IBM Labs in Haifa

Processing node

% Goal: Select the values to be used by node n
** Processing node n:
% If node state is processed — done
% Set node state to processed
% For every variable A read by n

»» Select a visible node w that writes A
«» Hide all other visible nodes that write A

X/

s Process w

19 © 2003 IBM Corporation

@ IBM Labs in Haifa

Fidgeting: An outline

® Start executing the tested program
© At each event:
® Create a new raw node
® Add it to graph
® First event in thread:
< Add edge from create in the parent thread
<& Add edges from initialization events
< Otherwise: add edge from the previous event in the thread
@ If the instruction cannot be replayed: process the node
® Execute the event,
® Raw: no intervention

& Processed: for each read variable, use its value as produced by the
visible write event

20 © 2003 IBM Corporation

@ IBM Labs in Haifa

Fidgeting around

x 1

y=1

8 1o
m%
- EHif (t1/=1) goto L1
‘
gk # print t1 &

,;.--.-I:I:.':I:.-"I:'.:I:'.:li"‘f""':'“_.—.--._E:
&8 L1: print t2 =

L1: print t2

21 © 2003 IBM Corporation

@ IBM Labs in Haifa

Fidgeting around

X=3

y=3

_\—1\>
t1=x
t1=x

t2:§ |
- A if (t11=1) goto L1
¥
print t1

v
L1: print t2

L1: print t2

22 © 2003 IBM Corporation

@ IBM Labs in Haifa

Table of contents

Background: problems and existing solutions
Fidgeting: why and how

Summary

23 © 2003 IBM Corporation

@ IBM Labs in Haifa

|

i

Old Math, New Math!

Summing up

7T

€ A new algorithm for generating interesting interleavings

@ More aggressive delays that with alternative pasts

€ More informed choice of values at decision points
® Especially useful for achieving coverage

® Noise-makers can help delay decision points

® Complexity issues remain to be addressed

® Some optimizations available and should be
evaluated

iy

hai

!
f

L1: print t2

24 © 2003 IBM Corporation

@ IBM Labs in Haifa

There once was aur;an who said, “God
Must think it exceedingly odd

If He finds that this tree

Continues to be

When there’s no one about in the Quad.”

=
2

“Dear Sir: A
Your astonishment’s odd:
| am always about in the Quad
And that’s why the tree
Will continue to be,
Since observed by,
Yours faithfully,
God.”

F

25

© 2003 IBM Corporation

@ IBM Labs in Haifa

26 © 2003 IBM Corporation

