Towards the proper “step” command
in parallel debuggers

Alexey Kalinov, Konstantin Karganov and Konstantin Khorenko

Institute for System Programming
of the Russian Academy of Sciences

ka@ispras.ru

PADTAD'04 ——

-~

Parallel versus distributed

Parallel computing means solving of one big problem
with essential synchronizations between processes
of the parallel program

Distributed computing means solving of one big
problem that can be divided or is initially divided into
set of independent or weakly synchronized tasks

PADTAD'04 ——

-

Tools for parallel computing

Communication libraries: MPI, PVM, ...
Programming languages: HPF, Split-C, mpC, ...

Master-slave paradigm — using parallel
programming tools for distributed computing

PADTAD'04 ——

4)
Synchronization is the main source of errors

In parallel programs logical synchronization errors
are the most difficult to detect

It is necessary to step synchronizing processes
concurrently

Advanced schemes of stepping is being wanted

S PADTAD'04 ——

-

Model MPI program

[* O0*/#i nclude "npi.h"
[* 1*/int main(int ac, char **av) {
[* 2%/ int rank, i1;
~ >/* 3*/ MPI _Init(&c, &av);
[* 4*] MPI _Comm r ank(MPl _COWM WORLD, &r ank) ;
[* 5% 1f (rank == 1) {
[* 6%/ MPI _Status s;
[* 7%/ MPI Recv(& ,1, MPl _INT, O, 0, MPl _COW WORLD, &s) ;

[* 8%/ }

[* 9%/ 1f(rank == 0) {

[*10*/ I = 0;

[*11*/ MPI _Send(& ,1, MPl _INT, 1,0, MPIl _COVWM WORLD) ;
[*12*] }

[*13*/ MPI _Finalize();
[*14*] return O;
[*15*%/}

, current positions of process with rank 0, rank 1

PADTAD'04 ——

-

Model MPI program (step 2)

[* O0*/#i nclude "npi.h"
[* 1*/int main(int ac, char **av) {
[* 2%/ int rank, i1;
[* 3*/ MPlI Init(&c, &av);
=~ >/* 4%/ MPlI _Comm rank(MPI _COVM WORLD, &r ank) ;
[* 5% 1f (rank == 1) {
[* 6%/ MPI _Status s;
[* 7%/ MPI Recv(& ,1, MPl _INT, O, 0, MPl _COW WORLD, &s) ;

[* 8%/ }

[* 9%/ 1f(rank == 0) {

[*10*/ I = 0;

[*11*/ MPI _Send(& ,1, MPl _INT, 1,0, MPIl _COVWM WORLD) ;
[*12*] }

[*13*/ MPI _Finalize();
[*14*] return O;
[*15*%/}

, current positions of process with rank 0, rank 1

PADTAD'04 ——

-

Model MPI program (step 3)

[* O0*/#i nclude "npi.h"
[* 1*/int main(int ac, char **av) {
[* 2%/ int rank, i1;
[* 3*/ MPlI Init(&c, &av);
[* 4*] MPI _Comm r ank(MPl _COWM WORLD, &r ank) ;
~ s/* 5%/ 1f (rank == 1) {
[* 6%/ MPI _Status s;
[* 7%/ MPI Recv(& ,1, MPl _INT, O, 0, MPl _COW WORLD, &s) ;

[* 8%/ }

[* 9%/ 1f(rank == 0) {

[*10*/ I = 0;

[*11*/ MPI _Send(& ,1, MPl _INT, 1,0, MPIl _COVWM WORLD) ;
[*12*] }

[*13*/ MPI _Finalize();
[*14*] return O;
[*15*%/}

, current positions of process with rank 0, rank 1

PADTAD'04 ——

-~

One sequential step — several parallel steps

>

[* 0*/ #i ncl

[* 1*[1i
[* 2*]
[* 3*/
[* 4%
[* 5%/
/*

7/
[* 8%
[* 9%
/ *10*/
[*11%]
/*

[*13%]
[*14%]
/*15%/)

>

Hde "mi h*

nt n

I nt | yntil process with rank O call MPIl_Send in line 11

VPl

}

Process with rank 1 cannot finish the next step

| COVM WORLD, & ank) ;

I f(rank == 0) {

O.

MPI_Send(&, 1, MPl I NT, 1,0, MPl _COMM WORLD) :

MPT
returr

It will take two additional steps so that process
with rank O call MPIl_Send in line 11

, current positions of process with rank 0, rank 1

PADTAD'04 ——

-

The main schemes of parallel step

Synchronous
Asynchronous

PADTAD'04 ——

4)
Synchronous scheme

The command is applied to all processes of a group, all
processes of the group are expected to complete the
step command, the possibility to interrupt the step

command execution iIs available

Advantage:
program state Is clear before and after the step

Disadvantage:
It IS necessary to perform additional actions to
manage the situation “one sequential step —
several parallel steps”

PADTAD'04 ——

4)
Asynchronous scheme

The command is applied to all processes of a group that
have already accomplished previous step, the debugger
control is returned to user without waiting the command
accomplishing

Advantage:
flexibility in management of the situation
“one sequential step — several parallel steps”

Disadvantage:
state of the parallel program is not clear (it is not
known either parallel step is accomplished or not)

PADTAD'04 ——

4)
Trivial parallel causes

The “trivial parallel cause” of process step command
Incompleteness is a waiting for another process action,
for which it is known that it has not been performed and
will not be performed during the current step of a
parallel program

If the debugger has a model of parallel program
execution it can support “smart” synchronous step
with handling of “trivial parallel causes”

PADTAD'04 ——

a)
Smart synchronous step

The parallel step of the program is considered to be
accomplished if for each process of the group one of
the following is true:

* the process has completed its sequential step initiated
by the current parallel step and stopped

» the process has completed its sequential step initiated
by one of the previous parallel steps and stopped

 the process cannot complete the execution of its
sequential step because of “trivial parallel cause”

- PADTAD'04 ——

-~

Smart stepping

[* O*/ #include "mi h*

[* 1*/int n Process with rank 1 cannot finish the next step
[* 2*[1 nt
/* 3%/ MPl _|nj
[* 4*[NP
[* B*[
/ *

_ank(MPl _COVMM WORLD, &r ank) ;

ank == 1) {

MPI _Status s;

7*/ MPI Recv(& , 1, MPl I NT, 0,0, MPl _COVWM WORLD, &s) ;
[* 8% }

[* 9%/ 1f(rank == 0) {

[*10*/ I = 0;

[*11*/ MPI _Send(& , 1, MPl I NT, 1,0, MPI _COVM WORLD) ;
[*12*] }

[*13*/ MPI _Finalize();

[*14*] return O;

[*15*%/}

, current positions of process with rank 0, rank 1

PADTAD'04 ——

-

Smart stepping (ctd)

[* O0*/#i ncl ude "mmi_h"

[* 1*[int n Process with rank 1 is blocked
[* 2*] 1Int
[* 3%/
[* 4%
[* 5%/
/ *

7%/ MPI Recv(& , 1, MPl | NT, 0,0, MPI _COW WORLD, &s) ;
[* 8%/ }

[* 9%/ 1f(rank == 0) {

[*10*/ I = 0;

[*11*/ MPI _Send(& ,1, MPl _INT, 1,0, MPIl _COVWM WORLD) ;
[*12*] }

[*13*/ MPI _Finalize();

[*14*] return O;

[*15*%/}

, positions of process with rank O, rank 1, blocked

PADTAD'04 ——

-

Smart stepping (ctd)

[* O0*/#i ncl ude "mmi_h"

[* 1*[int n Process with rank 1 is still blocked
[* 2*] 1Int
[* 3%/
[* 4%
[* 5%/
/ *

7%/ MPI Recv(& , 1, MPl | NT, 0,0, MPI _COW WORLD, &s) ;
[* 8%/ }

[* 9%/ 1f(rank == 0) {

[*10*/ I = 0;

[*11*/ MPI _Send(& ,1, MPl _INT, 1,0, MPIl _COVWM WORLD) ;
[*12*] }

[*13*/ MPI _Finalize();

[*14*] return O;

[*15*%/}

, positions of process with rank O, rank 1, blocked

PADTAD'04 ——

(-)

Smart stepping (ctd)

[* O0*/#i nclude "npi.h"

[* 1*/int main(int ac, char **av) {

[* 2%/ int rank, i1;

[* 3*/ MPI Init(&c, &av);

[* 4*] MPI _Comm r ank(MPl _COWM WORLD, &r ank) ;

[* 5% 1f (rank == 1) {

[* 6%/ MPl_Status s:

;i ;:; \ MR Process with rank 0 cannot finish the next step §S) :
>/* 9%/ i1f(ra
[*10*/ '
[*11*
[% }

13/ MPI _Finalize();
[*14*] return O;
[*15*/}

“Send(& , 1, MPl _I NT, 1, 0, VPl _COVM WORLD) ;

, positions of process with rank O, rank 1, blocked

- PADTAD'04 ——

-

Smart stepping (ctd)

/*
/*

O*/ #i ncl ude "npi . h"
1*/int main(int ac,

char **av) {

&av) ;
MPI _Conmm _r ank(MPI _COVM _WORLD, &r ank) ;

[* 2*] int rank, 1;
[* 3*/ MPI _Init(&ac,
[* 4%/
[* 5% 1f (rank == 1) {
[* 6%/ MPl_Status s:
[* 7%/ VP
[* 8%/ }
[* 9%/ i1f(ra
[*10*/ '
[*11* _Send(& , 1,
[* }

~—</*13*/ MPI _Finalize();
[*14*] return O;
[*15*%/}

and is blocked

MPI _I NT, 1, 0, MPI _COVM WORLD) ;

, positions of process with rank O, rank 1, blocked

PADTAD’'0O4 —

-

Smart stepping (ctd)

[* O0*/#i nclude "npi.h"
[* 1*/int main(int ac, char **av) {
[* 2%/ int rank, i1;
[* 3*/ MPlI Init(&c, &av);
[* 4*] MPI _Comm r ank(MPl _COWM WORLD, &r ank) ;
[* 5% 1f (rank == 1) {
[* 6%/ MPI _Status s;
[* 7%/ MPI Recv(& ,1, MPl _INT, O, 0, MPl _COW WORLD, &s) ;
[* 8%/ }
[* 9%/ 1f(rank == 0) {
[*10*/ I = 0;
[*11*/ MPI Send(& ,1, MPl _INT, 1,0, MPl COWM WORLD) ;
[*12*] }
[*13*/ MPI _Finalize();
> >/*14*] return O;
[*15*/}

, positions of process with rank O, rank 1, blocked

PADTAD'04 ——

4)
Smart stepping advantages

Proposed smart stepping has the following advantages:

* it does not require additional actions for stepping
parallel program

« parallel program stepping is as close to the
sequential program stepping as possible

» parallel step cannot be finished only due to:
= sequential cause

= error in the program

- PADTAD'04 ——

4)

Architecture of parallel debuggers

Debugger client

& &

~ PADTAD'04 ——

()

Problem with MP|l Send

MPI implementation is free to decide whether to buffer
the message being sent or not

* in case of message buffering the operation is local and
can be completed without the matching receive call

* in other case the operation is not local and cannot
be completed before the matching receive call is posted

For smart stepping MPI implementation should provide
iInformation about the chosen send mode

- PADTAD'04 ——

()

mpC Workshop

Integrated development environment for mpC parallel
programming language

mpC is a parallel extension of ANSI C targeted to
programming heterogeneous networks

mpC relates to C+MPI in parallel programming as C
relates to assembly language in sequential programming

mpC Workshop source-level parallel debugger
supports smart stepping

- PADTAD'04 ——

-

mpC analogue of model MPI program

¥ enbB exe_(det
=3 Source Files
L[lexB6.mpc
-3 Header Files

«| | B

B Target[s VPM

% mpC Workshop - [ex56.mpc] =]
|m_Ele Edit View Project Buld Deb Definjtion of network of 2 nodes. =5 x|
|[DEEa@ +=@ 8 2R % | nost has coordinate 0 in w.
el - #include "mpc.h =
exob . .
= 3 Target_Debug W SIS 8 Variable i is distributed over w.
net SimpleNet{Z) w;

o i :
Lot , 0 is assigned to the component
[W:I==1]1=[host]1; . .
S b ‘ of variable i on host .
} w
Ril 2
m eﬁ@mpf:[The value of the component of variable |]

LT, gl 4] s

x

File | Line | Text

on host is assigned to the component of =%

Jl

CimpCiServeriOwnMPIL| Variable 1 on the node with coordinate 1.

Errars: O
Operation successiul -

| L

«| <] »|»["Build 4 Debug » Find in Files

Ready

8 OWL - 02 [[n 3, Col 13 [CAP [NUM [OVE [READ 4

.

PADTAD'04 ——

(")

mpC Workshop debug session

% mpC Workshop - [ex56.mpc] _ O] %
J@ File Edit View Project EBuld Debug “Window Tools Help ;|E|£||
NSEE@ L2858 0E W =l (R @ 08 & Dol Ee
#include "mpc.h” Ceox
. . == |d=0 File "exb6.mpc” Line 3
B int [*]main(} { i (0]
net SimpleNet (Z) w;l _______ = (1)
int [w]li;
[host]i=0;
s T==1 a=Thost]da;
return 0;
}
RIN 2
@ exbE.mpe RN = Debug . | "8 Nets | > Call sta...
* I Name| (0| (1)
Ready 8 OWL: 02 | Ln 4, Col 23 [CAP[NUM |OVR [READ 2

PADTAD 04 ——

-

mpPC Workshop debug session (ctd)

% mpC Workshop - [ex56.mpc] _ O] %
JD File Edit View Project Build Debug “Window Tools Help ;|§|£||
[DEHE 2. 8 nE @ FlleetE @08 & o=k

#include "mpc.h”

int [*lmain{) {

net SimpleNet{Z) w;
Tt Bl
[host]1i=0
s T==1 Jmr=
eturn 0;

[host]di;

P,

== |d=0 File "exat.mpc” Line &

----D ld=1 File "exb6.mpc" Line 7

| =
@ exbE. mpc ¥ = Debug . | "8 Nets | > Call sta...
* I Name| (0| (1) : :
Process with coordinate 1
cannot finish the next step
Ready o oW 02 | LnB, Col 1 |CARMUM [OVR |READ 7
~ PADTAD'04 ——

(")

mpPC Workshop debug session (ctd)

% mpC Workshop - [ex56.mpc] _ O] %
J@ File Edit View Project EBuld Debug “Window Tools Help ;|E|£||
[DEHE 2. 8 nE @ =]l (R @ 08 & Dol Ee

#include "mpc.h”

P,

. . = |d=0 File "exb6.mpc” Line 7
it [Flmaanty S

.) - L ()
e e 2 R - |d=1 File "ex56.mpc" Line 7

VT Bl
[Hestli=n;
| [T==1]a=Thogtla:

eturn 0;

4] 2
@ exbE. mpc ¥ = Debug . | "8 Nets | > Call sta...
~ [Name | (0)] (1)
and is blocked
Ready o8 OWL: 02 [Ln7, Col 1 [CAF[NUM [OVE [READ 4

PADTAD 04 ——

o OWL: 02| Lng Col 1 [CAPINUM [OVR READ 4

()
mpPC Workshop debug session (ctd)
% mpC Workshop - [ex56.mpc] _ O] %
J@ Fle Edit ¥iew Project Build Debug “Window Tools Help ;|E|£||
[DEHEE 1288 nF @ =] |ae® 08| & | DR
#include "mpc.h” . X
. . == |d=0 File "ex5b6.mpc” Line 8
int [*]main{) | L = (0]
net SimpleNet {2} w; M = (1)
int [w]i:
[Hestli=n;
s T==1 a=Thost]da;
[=8=> return 0;
}
4] 2
@ exbE.mpe RN = Debug . | "8 Nets | > Call sta...
* I Name| (0| (1)
Ready

PADTAD 04 ——

-
Conclusion

Smart stepping allows user to avoid the routine
work and to make the debugging of a parallel

sequential program

programming language used

program as close as possible to the debugging of a

Implementation of smart stepping requires the
support from communication library or parallel

PADTAD'04 ——

