
Knowledge-Driven Decision Optimization for Non-Experts

Yishai A. Feldman, Aviad Sela, Segev Wasserkrug
IBM Research – Haifa

Mount Carmel, 3498825 Haifa, Israel
{yishai, sela, segevw}@il.ibm.com

Abstract

Decision optimization is a pressing need of small and large
enterprises, who are trying to succeed in a competitive and
rapidly changing marketplace. The creation of decision opti-
mization models typically requires modeling the problem in
a manner that can be solved by optimization engines such as
IBM CPLEX R©. While high-level modeling languages exist
for many solvers, their use requires significant optimization
expertise, due to the need to model the problem in terms of
constraining variable values, and to create models that can
be solved efficiently. This severely limits the widespread use
of optimization. In this demo, we present an alternative ap-
proach, which enables users who are not optimization experts
to write programs that verify that a given solution satisfies the
problem constraints and compute the value of the objective
function. These programs are written in popular languages
such as Python; our technology, demonstrated here, analyzes
such specifications and produces models for an optimization
solver. We believe that this approach will enable the wider
community of data scientists and developers to model opti-
mization problems, enabling a much more widespread use of
optimization.

Knowledge-Driven Optimization
Decision optimization can provide significant value to many
enterprises, providing benefits typically measured in mil-
lions, and sometimes billions, of dollars. However, realiz-
ing this value often requires modeling the problem in a way
that can be solved by optimization engines such as IBM
CPLEX R©. This is complex, as such modeling requires spec-
ification in terms of constraining variables rather than com-
puting their value.

As a running example, consider the problem of optimally
assigning people to offices so that several constraints are
met. Examples of such constraints include that each em-
ployee is assigned to the same floor as his/her team lead
unless the team lead is a third-level manager or above (in
which case the team is too large to fit on one floor), and that
the number of seats of a given type required by the solution
does not exceed the number of available seats. The quality
of the solution is measured in terms of objectives such as the
total monthly rental cost, and the number of floors occupied

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by employees all belonging to the same area (both of which
should be minimized).

There are two major steps in the creation of a specifica-
tion of an optimization problem suitable for a solver such
as IBM CPLEX R©. First, it is necessary to define the appro-
priate decision variables. For example, the solution of the
room-allocation problem can be formalized in at least two
ways: (1) one binary variable for each employee and floor,
denoting whether the employee is assigned to that floor or
not; (2) one variable per employee, whose value is the floor
to which that employee is assigned in the solution. The sec-
ond step is formalizing the constraints and objective func-
tion in a way that satisfies the limitations of the particu-
lar solver engine. In the case of a linear-programming (LP)
solver, the formalization would have to consist of non-strict
linear (in)equalities. Often, the natural specification of the
requirements of the optimization problem does not conform
to these limitations, and would have to be transformed in
various ways in order to be acceptable to the solver. For
example, taking the integer part of a real variable is not a
linear operation; however, it can be expressed through two
inequalities. One of these would be strict, and would have
to be massaged (by adding an appropriate epsilon value) to
a non-strict inequality. In addition, the formulation of the
problem will be different for different choices of the repre-
sentation of the variables. Needless to say, carrying out such
modeling in order to achieve a correct specification that can
be solved efficiently requires very specific expertise.

To alleviate this problem, and make optimization tech-
nology available to a wider audience,we have developed an
alternative technology, based on a common computational
paradigm. Users start by writing a program in a conven-
tional language such as functional subset of Python, to verify
a given solution instead of specifying an optimization model
for finding the optimal solution. Developers and data scien-
tists who are not optimization experts should find the pro-
cess of developing such a program familiar and convenient.
Moreover, this program checks that the solution satisfies the
problem constraints, and computes the value of the objective
function achieved by the given solution. Such a program is
already useful, because it can be used to evaluate and com-
pare potential solutions, whether these are created manually
based on experience, or by some heuristic approach. It is
also helpful when trying to ensure that the formulation of



def assigned_offices(self, o1: OfficeType,
f1: Floor) -> int:

return (math.ceil(self.occupancy(f1, o1)
/ self.get_office_info(o1)
.max_occupancy))

@minimize
def cost_objective(self) -> float:

return sum(self.assigned_offices(o1, f1)
* self.get_office_info(o1).cost
for o1 in self.all_office_types()
for f1 in self.all_floors())

Figure 1: Python code that computes the rental cost in the
room-allocation problem.

minimize sum (o1 in all_office_types,
f1 in all_floors)

assigned_offices[o1][f1]
* get_office_info[o1].cost;

subject to {
forall (o1 in set_of_all_office_types)
forall (f1 in set_of_building_floors)

assigned_offices[o1][f1]
>= occupancy[f1][o1]

/ get_office_info[o1].max_occupancy
&& assigned_offices[o1][f1]
<= occupancy[f1][o1]

/ get_office_info[o1].max_occupancy
+ 1 - 1e-10;

}

Figure 2: Generated specification for optimization solver.

the problem actually conforms to the business requirements,
using well-known testing techniques.

Given this specification, our technology is able to auto-
matically generate a model for a mathematical optimiza-
tion engine. We therefore expect this to enable the much
more widespread application and use of optimization in en-
terprises.

Example
An example of a verification program specified using our
approach is given in Figure 1. This is an excerpt from a pro-
gram that checks a solution to a room-allocation problem, in
which employees are assigned to offices in different floors
of a building under constraints related to the type of office
each type of employee should be assigned to and the groups
they work with. The figure shows how to compute the to-
tal rental cost, based on the number of occupied offices; this
cost should be minimized, as indicated by the @minimize
decorator.

The resulting automatic translation of this part of the pro-
gram into a specification suitable for the IBM CPLEX R©

solver is shown in Figure 2. Several transformations had to
be performed on the verification program in order to get this
form, which is acceptable to the solver. One example of such
a transformation is the ceil function, which cannot be used

on decision variables, and needed to be transformed into two
inequalities. The second of these is a strict inequality (less
than), and needed to be converted into a non-strict inequality
(less than or equal) by using an appropriate epsilon. Many
more such transformations are needed in order to transform
a full verification program into an optimization specifica-
tion.

These transformation are implemented on top of an ex-
pressive mathematical representation, which contains math-
ematical expressions as well as logical operators, including
quantifiers. This can support a variety of formalisms, includ-
ing functional Python programs and optimization specifica-
tions. Converting an input formalism into this representa-
tion, and generating the output formalism from it, are rela-
tively straightforward. However, the representation needs to
be analyzed and transformed according to the requirements
of the output formalism. This is done by two major technolo-
gies, which are built over the mathematical representation:
(1) rewrite rules with a pattern language; and (2) constraint
propagation over the AST and data-flow graphs. The trans-
formations shown in the example above, and many others,
are implemented as rewrite rules; the correct application of
these rules requires, among other things, an analysis of the
types and precise domains of the variables involved.

Demonstration

In our demonstration, we will begin by showing how a sub-
set of the room allocation problem can be modelled using
functional Python. We will then show how this code can be
directly run to verify a given solution. Following this, we
show the automatic translation of this specification into an
optimization model in IBM’s CPLEX R© OPL optimization
modeling language, and solve this model. Finally, we will
take the output produced by the optimization model, and
show how it can be verified in the functional Python specifi-
cation.

Related Work

The Decision Guidance Query Language (DGQL) (Egge
2014) is a language for describing optimization problems
from data descriptions; it is an extension of SQL. A research
prototype converts problems written in DGQL into programs
for IBM CPLEX R©.

CVXPY (Agrawal et al. 2018) translates optimization
specifications written in a domain-specific language (DSL)
into specifications for a number of optimization engines. It
analyzes the problem to find the best class of solver for it,
and transforms the problem description into a form suitable
for that solver.

Both DGQL and CVXPY use rewriting rules, in a way
similar to our technology. However, the inputs to these sys-
tems cannot be used to independently verify a given solu-
tion, the way that the functional Python input to our system
can, since both use non-standard languages (an extension of
SQL for DGQL, and a DSL for CVXPY).



References
Agrawal, A.; Verschueren, R.; Diamond, S.; and Boyd, S.
2018. A rewriting system for convex optimization problems.
Journal of Control and Decision, 5(1): 42–60.
Egge, N. E. 2014. Decision Guidance Query Language
(DGQL), Algorithms and System. Ph.D. thesis, George Ma-
son University, Fairfax, VA.


