IBM Haifa Research Lab

Service ldentification in Legacy Cod
Structured and Unstructured Analys

Inbal Ronen, Netta Aizenbud, Ksenye

May 2007

© 2007 IBM Corporation

IBM Haifa Research Lab

Qutline

= Motivation

= Structured and Unstructured Analysis
= Our Method

= Case Study

= Future Directions

= Conclusions

2 © 2007 IBM Corporation

IBM Haifa Research Lab

SOA Transformation

= Moving to SOA has become a strategic goal of many companies
— Flexible, distributed architecture

— Better adaptation to a rapidly changing business environment

— Better alignment of business processes and underlying applications with
business goals

= There is a need for tools that assist in the transformation process

Custormer facing
APPIECAN oS- Wiewy
into enterprise
sssssssss

Business Frocess

Services -
Ratonalization of
Enterprise Systems
Against Business
Meaningful Services

Business Componenis
oo

tegration s

Intesratiomn
Exposing Existing
Enlerpriss Svstemes

ardwware’S otwwanre

3 © 2007 IBM Corporation

IBM Haifa Research Lab

Reuse of Legacy Systems

= Lots of resources and time have been spent on
existing legacy systems

* Need to retain as much as possible of previous
investments

= Requires identification of where a service or part of it
Is already implemented and can be reused

= Manual identification of candidate code sections is
tedious and requires domain experts

= A (semi) automatic tool is needed to assist in this
process

4 © 2007 IBM Corporation

IBM Haifa Research Lab

Transformation Approaches

= Top Down
— Define to-be model and implement it
— No consideration of existing system

= Bottom Up
— Start from given legacy as-is system and expose as SOA
— Harder to adapt to new business models

= Meet in the middle
— Combine Top Down and Bottom Up approaches
— Start from target to be model
— Map into existing system
— Exploit reuse and implement if needed

5 © 2007 IBM Corporation

IBM Haifa Research Lab

Structured and Unstructured Source Code Analysis

= Unstructured Analysis

— Information Retrieval (IR) techniques, e.g. tokenization,
usage of thesauri and stemming of source code and
comments

— No consideration of code structure and semantics

= Structured Code Analysis
— Classic static analysis, e.g. control flow, data flow
— No comment analysis
— No identification of non-exact matches

=Combination of techniques facilitates effective and
precise service implementation search

6 © 2007 IBM Corporation

IBM Haifa Research Lab

SOMA — Service Oriented Modeling and Architecture

An IBM end-to-end SOA method for the identification,
specification, realization and implementation of services,
components and flows

— Service Identification — combines top-
down, bottom-up, and meet-in-the-middle
techniques for the identification of _
services to be implemented in the new identiication A Worciion Pmodekng g,
SOA environment

component flow service flow

— Service Specification — further designs the spanifcalion [Sevie | specification
: Specification F specification
subsystems that were found in the rormicr R message & evert
previous step and specifies the specification ~_ = specification
coordination between them. Details the Service realization decisions
components that implement the services realization Senvce allcatin component layer

— Service Realization - defines the software
that realizes a given service

=Qur method fits into the Service Identification phase

7 © 2007 IBM Corporation

IBM Haifa Research Lab

Service ldentification Method

= Service definition includes a service title — short
functionality description (e.g. “Add a new customer
account”)

= Our method
— receives a service title as input
— searches for potential implementations in the code
— ranks the results by relevance to the service title

8 © 2007 IBM Corporation

IBM Haifa Research Lab

find 000100 ID DIVISION.
Example 1 “Add an account” 000200
000300 PROGRAM-ID. PROGI.

214000 PROCEDURE DIVISION

* ldentify PO0O30-PROC-CREATE-
ACCT procedure

214lOO~k*‘k‘k~k*‘k‘k‘k*‘k*******************

214400* HANDLES RECORD ADDITION

214410* REQUEST. AFTER OPERATION IS

O 0 9 J o oo w N

— The name indicates that it

214500* COMPLETED, EVENT REPORT IS

implements the desired functionality ST CRERTED. SO HADRIORS
12 214700* PROCEDURE

— Procedure name does not include

J
w

214800*************'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k

the eXaCt termanIOQy 14 215000 PO030-PROC-CREATE-ACCT.
15 215100
- Contains CREATE - a synonym of 16 215200 MOVE +0 TO TRAN-001-RECORD

“add”

- Contains ACcCT - an abbreviation of
“account”.

9 © 2007 IBM Corporation

IBM Haifa Research Lab

find
Exam ple 2 “Add an account”

000100 ID DIVISION.
000200

000300 PROGRAM-ID. PROG2.

075340 01 ACNT-NUMBER PIC S9

— The preceding comment resembles

= Identify P0040-PROC1 procedure | oeTeo o prsior
the desired service title i

214000 PROCEDURE DIVISION

10 214050
— The comment adheres to the -y
. . 12 214200* PROC:
Company Conventlon- 13 214800 *****************************
PROC: <procedure description> 14 215000 a e i
15 215100
=Match inside the convention - izzz N
strengthens the impression that 15 215200 MOVE +0 TO ACNT-N

the procedure is a good candidate

© 2007 IBM Corporation

IBM Haifa Research Lab

ilgle

Exam ple 3 “Add an account”

* ldentify PO0O50-PROC-REP

=Low ranking

procedure

— Neither procedure name nor its
comment is relevant to the service title

— References A2A-REQ-COUNTER variable

— The variable holds the “number of add
acct requests” as stated by the variable
definition comment

variable
definition

O 0 J o oo w N

e | N
© 0 U o L W N PO

000100 ID DIVISION.

000300 PROGRAM-ID. PROG3.

067000 DATA DIVISION.

075300** NUMBER OF -REQUESTS
075340 01 AA-REQ-COUNTER PIC S9
214000 PROCEDURE DIVISION
DIATQOKFHFHhhkkkkkkkkk kAKX XXX AARRKKAR
214150* PROC: PRODUCE REPORT

214160%*

214200* PRODUCES VARIOUS KINDS OF
214300* REPORTS ABOUT REQUESTS THAT
214400* HAVE BEEN PROCESSED

DIAGQO**H Kk kkk kA XX XXX XXKXK KKK KKK KKKk Kk K
214600 POO50-PROC—REP.

214700

214800 MOVE +1 TO AA-REQ-COUNTER

© 2007 IBM Corporation

IBM Haifa Research Lab

Method Overview v

= Stage 1: source code processing l
1. Source Code Processing
— Analyze code structure

. . . Structured Unstruc
— ldentify components of interest in code Analysis Analy
and comments

— Insert code and processing results into

tured
sis
repository S?rfﬁ'é’e ﬁ
- Stage 2: search and ranking §
N
— Search for service title matches in the ﬂ\(l/\ \
artifacts that have been processed \
— Rank match relevance, taking into 2. Search and Ranking

account structural and semantic Structured Unstructured
context Analysis Analysis

* Stage 2 can be repeated for multiple —
service titles over the same processed Ranked Candidate
code artifacts Locations in Code

it Ao
c~T

12 © 2007 IBM Corporation

IBM Haifa Research Lab

Source Code Processing Stage

= ldentify programming constructs (e.g. variable declarations,
procedure names, comments)

— Perform shallow analysis based mostly on a composition of regular

expressions cm—
— Perform deep static code analysis (control flow and data flow annotation
detection)
— Analyze COmmentS, eXpIOIt Conventlons 2141008 s JAE R

214200* PROC:

—_ Mark Constructs USing annotations DUAGOO* %K %k % kK kK kk Kok kkkkkKkkKkkKk*

= Tokenize - enable matching of substrings 215000 FO0R0TEROCE:

— Consider special characters (spaces, commas, underscores) and
code naming practices (Hungarian notation, CamelCase) i

= Insert tokens and annotations into repository convention”
: : « y ” annotation
— Ignore tokens with low semantic value (e.g., “and”, “the”)

— Our method uses a search engine as the repository (provides
indexing and querying capabilities)

13 © 2007 IBM Corporation

IBM Haifa Research Lab

Search and Ranking Stage

= Tokenize service title
— Apply the techniques used during the source code processing stage

Construct and execute search query
— Include the tokens from the service title

— Exploit unstructured analysis capabilities of the search engine (e.g. stemming, thesauri and
abbreviation usage) to search for inexact matches

+ Provide common language and domain-specific thesauri and abbreviation dictionaries to the
search engine

Analyze query results

— Search engine returns the location of each query token occurrence (or its synonym)
— The method assembles valuable occurrence combinations such that

« There is exactly one match for every token (or one of its synonyms)
« Token match locations are close to each other

Rank match relevancy

— Evaluate textual similarity: 100% for exact match of all service title tokens
— Aggregate results to procedure level

— Apply supplemental ranking heuristics based on semantic context

14 © 2007 IBM Corporation

IBM Haifa Research Lab

Ranking Heuristics

= High score for match in procedure declaration

= Higher score for match in procedure declaration and in the
adjacent comment

= Match in variable declaration or close to it
— Use data flow analysis resulis to find variable referencing code
— |dentify the reference location as a match with low score

— The rationale: variable definition comment might include the service
title, no additional comment in the variable usage code

= Separate matches for service title subject (houn) and action (verb)

— Look for noun matches in or close to a
variable declaration

075340 01} ACNT-NUMBER PIC S9

Verb
— Look for verb matches in or close to the £5 $0040-PROCL. e
variable referencing code 215150*** INITIALIZE NOMBSR
Noun 215160*** BEFORE ADDING
matCh 215200 MOVE +0 TO ACNT-NUMBER

15 © 2007 IBM Corporation

IBM Haifa Research Lab

Source I
Code

~

Case Study Implementation

. . 1. Source Code Processing
= Implemented a plug-in to an internal IBM |
tool that supports the IBM SOMA

methodology

& 5

= Leveraged the Unstructured Information
Management Architecture Open Source
framework (UIMA)

= Used Juru as the underlying search engine

= Enables the user to select a service

2. Search and Ranking

definition from the to-be model o | e —
= Returns a list of ranked implementation
candidates l .

Ranked Candidate
Locations in Code

16 © 2007 IBM Corporation

IBM Haifa Research Lab

Case Study

= Used a customer application (a large bank in North America)

— Consists of a set of 30 COBOL programs and 48 copybooks, with a
total size of 60K lines

= Searched for six service titles that are common for banking
applications

= Search in two levels

— The program level — identify the program that is more likely to
contain the requested functionality, by calculating the total match
rate in proportion to its size

— The procedure level — search for specific procedures that
implement the requested functionality. The rank given to each
procedure was calculated using the heuristics described before

17 © 2007 IBM Corporation

IBM Haifa Research Lab

Case Study Results

= Manual inspection of the procedures pointed to by
our method shows that the results are valuable with
80% success rate

— Users are provided with valuable candidates in the legacy
code for service realization

— Greatly assists in the transition to a SOA enabled architecture
= For service title “Reject Transaction” the results were
inconsistent

— The service title is too general and not sufficiently focused

A transaction is a widely used concept in COBOL programs

* The rejection operation can appear everywhere a transaction
occurs

i © 2007 IBM Corporation

IBM Haifa Research Lab

Case Study Results cont.

i . aervice Title | Program Frogram Program

Some programs appear in the result list of the pried; [mlfed |
program level search only T L e
= A match rate that depends only on the textual e : =

fitness of the searched service title to the code text | Transaction

is not accurate enough Moy F A B
= The additional heuristics focus the results on more | Meddy & H

appropriate areas in the code i~ - = >

agn . Account

Identified a main program (A) that routes the Open B F M
execution to different programs according to the [&ccoumt

business function

= Guides the user to the entry point of most of the
business functions, from there the execution path of
a specific function can be followed

Service Title Procedure Procedure Procedure Procedure Procedure
rarked first ranked second | ranked third tatiked forth tatiked fifth

Terminate Payment | Al Al AZ 31 ju)|

Eeject Transaction | &4 Hl A5 A6 AT

Modify Status F1 A8 A9 Fi A10
Modify Rating 32 a3 34 35 3

Cloge Accourt A11 A1 &13 &14 F3

Daen Account A5 El AJ F4 Alb

© 2007 IBM Corporation

IBM Haifa Research Lab

Future Directions

= Use additional Natural Language processing (NLP) techniques
— Consider sentence breaks in comments, e.g. “... account. Open...”

— Identify main noun and verb in service title, e.g. for title “Open a
new user account” identify “account” and “open”

* Give higher ranking to these in query and ranking

« In OO code look for class names that include the noun and method
names that include the verb

+ Identify matches that include a verb in procedure declaration and a noun
as one of the parameter names or variable names in the body

— Consider whether a token in title is a verb or noun during query
expansion, e.g. for “Record Status”, “record” is a verb and not a
noun

20 © 2007 IBM Corporation

IBM Haifa Research Lab

Future Directions cont.

= CRUDL (Create, Read, Update, Delete or List) Analysis

— Identify language constructs that perform these tasks, e.g. for
the notion of “creation” in the service title look for INSERT in
SQL or new and malloc statements in code

= Consider additional information on a service in the
model, e.g.

— Service descriptions
— Service interfaces

= Consider feedback from previously performed
mappings

21 © 2007 IBM Corporation

IBM Haifa Research Lab

Summary

= Presented a method for the identification of services in legacy
source code in the context of SOA transformation

= The technology uses a combination of structured and
unstructured analysis techniques over source code and its
comments

— Considers information found in comments
— Elaborates in-exact matches

— Takes into account structural and semantic context of a match
during ranking

= Compared to manual inspection of the code, which is the
prevalent practice nowadays, our method significantly reduces
the required effort

22 © 2007 IBM Corporation

IBM Haifa Research Lab

Contacts

= Authors

— Netta Aizenbud neta@il.ibm.com

— Ksenya Kveler ksenya@il.ibom.com

— Inbal Ronen inbal@il.ilbm.com

= Software Asset Management Group at HRL
— Jonathan Bnayahu bnayahu@il.iom.com

23 © 2007 IBM Corporation

