
IBM Haifa Research Lab

© 2007 IBM Corporation

Service Identification in Legacy Code Using
Structured and Unstructured Analysis

Inbal Ronen, Netta Aizenbud, Ksenya Kveler

May 2007

IBM Haifa Research Lab

© 2007 IBM Corporation�

Outline

�Motivation

�Structured and Unstructured Analysis

�Our Method

�Case Study

� Future Directions

�Conclusions

IBM Haifa Research Lab

© 2007 IBM Corporation�

SOA Transformation

� Moving to SOA has become a strategic goal of many companies

– Flexible, distributed architecture

– Better adaptation to a rapidly changing business environment

– Better alignment of business processes and underlying applications with
business goals

There is a need for tools that assist in the transformation process

IBM Haifa Research Lab

© 2007 IBM Corporation�

Reuse of Legacy Systems

� Lots of resources and time have been spent on
existing legacy systems

� Need to retain as much as possible of previous
investments

� Requires identification of where a service or part of it
is already implemented and can be reused

� Manual identification of candidate code sections is
tedious and requires domain experts

A (semi) automatic tool is needed to assist in this
process

IBM Haifa Research Lab

© 2007 IBM Corporation�

Transformation Approaches

� Top Down

– Define to-be model and implement it

– No consideration of existing system

� Bottom Up

– Start from given legacy as-is system and expose as SOA

– Harder to adapt to new business models

� Meet in the middle

– Combine Top Down and Bottom Up approaches

– Start from target to be model

– Map into existing system

– Exploit reuse and implement if needed

IBM Haifa Research Lab

© 2007 IBM Corporation�

Structured and Unstructured Source Code Analysis

� Unstructured Analysis
– Information Retrieval (IR) techniques, e.g. tokenization,

usage of thesauri and stemming of source code and
comments

– No consideration of code structure and semantics

� Structured Code Analysis
– Classic static analysis, e.g. control flow, data flow

– No comment analysis

– No identification of non-exact matches

Combination of techniques facilitates effective and
precise service implementation search

IBM Haifa Research Lab

© 2007 IBM Corporation�

SOMA – Service Oriented Modeling and Architecture

– Service Identification – combines top-
down, bottom-up, and meet-in-the-middle
techniques for the identification of
services to be implemented in the new
SOA environment

– Service Specification – further designs the
subsystems that were found in the
previous step and specifies the
coordination between them. Details the
components that implement the services

– Service Realization - defines the software
that realizes a given service

An IBM end-to-end SOA method for the identification,
specification, realization and implementation of services,
components and flows

Our method fits into the Service Identification phase

IBM Haifa Research Lab

© 2007 IBM Corporation�

Service Identification Method

� Service definition includes a service title – short
functionality description (e.g. “Add a new customer
account”)

� Our method

– receives a service title as input

– searches for potential implementations in the code

– ranks the results by relevance to the service title

IBM Haifa Research Lab

© 2007 IBM Corporation�

Example 1

� Identify P0030-PROC-CREATE-
ACCT procedure

– The name indicates that it
implements the desired functionality

– Procedure name does not include
the exact terminology
• Contains CREATE - a synonym of

“add”
• Contains ACCT - an abbreviation of

“account”.

1 000100 ID DIVISION.

2 000200

3 000300 PROGRAM-ID. PROG1.

4 ...

5 214000 PROCEDURE DIVISION

6 214100******************************

7 214400* HANDLES RECORD ADDITION

8 214410* REQUEST. AFTER OPERATION IS

9 214500* COMPLETED, EVENT REPORT IS

10 214510* CREATED. ACCOUNT MANDATORY

11 214600* FIELDS ARE SET IN THIS

12 214700* PROCEDURE

13 214800******************************

14 215000 P0030-PROC-CREATE-ACCT.

15 215100

16 215200 MOVE +0 TO TRAN-001-RECORD

find
“Add an account”

IBM Haifa Research Lab

© 2007 IBM Corporation	

Example 2
1 000100 ID DIVISION.

2 000200

3 000300 PROGRAM-ID. PROG2.

4 ...

5 067000 DATA DIVISION.

6 ...

7 075340 01 ACNT-NUMBER PIC S9

8 ...

9 214000 PROCEDURE DIVISION

10 214050

11 214100******************************

12 214200* PROC: ACCOUNT ADDITION.

13 214800******************************

14 215000 P0040-PROC1.

15 215100

16 215150*** INITIALIZE NUMBER

17 215160*** BEFORE ADDING

18 215200 MOVE +0 TO ACNT-NUMBER

find
“Add an account”

� Identify P0040-PROC1 procedure

– The preceding comment resembles
the desired service title

– The comment adheres to the
company convention:
PROC: <procedure description>

Match inside the convention
strengthens the impression that
the procedure is a good candidate

match inside
procedure
description

IBM Haifa Research Lab

© 2007 IBM Corporation		

Example 3

� Identify P0050-PROC-REP
procedure

– Neither procedure name nor its
comment is relevant to the service title

– References AA-REQ-COUNTER variable

– The variable holds the “number of add
acct requests” as stated by the variable
definition comment

Low ranking

1 000100 ID DIVISION.

2 000300 PROGRAM-ID. PROG3.

3 ...

4 067000 DATA DIVISION.

5 ...

6 075300** NUMBER OF ADD ACCT REQUESTS

7 075340 01 AA-REQ-COUNTER PIC S9

8 ...

9 214000 PROCEDURE DIVISION

10 214100*****************************

11 214150* PROC: PRODUCE REPORT

12 214160*

13 214200* PRODUCES VARIOUS KINDS OF

14 214300* REPORTS ABOUT REQUESTS THAT

15 214400* HAVE BEEN PROCESSED

16 214500******************************

17 214600 P0050-PROC-REP.

18 214700

19 214800 MOVE +1 TO AA-REQ-COUNTER

find
“Add an account”

variable
definition

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Method Overview

� Stage 1: source code processing
– Analyze code structure
– Identify components of interest in code

and comments
– Insert code and processing results into

repository

� Stage 2: search and ranking
– Search for service title matches in the

artifacts that have been processed
– Rank match relevance, taking into

account structural and semantic
context

* Stage 2 can be repeated for multiple
service titles over the same processed
code artifacts

Service
Title

Ranked Candidate
Locations in Code

2. Search and Ranking

Structured
Analysis

Unstructured
Analysis

Thesauri

1. Source Code Processing

Structured
Analysis

Unstructured
Analysis

Repository

Source
Code

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Source Code Processing Stage

� Identify programming constructs (e.g. variable declarations,
procedure names, comments)
– Perform shallow analysis based mostly on a composition of regular

expressions
– Perform deep static code analysis (control flow and data flow

detection)
– Analyze comments, exploit conventions
– Mark constructs using annotations

� Tokenize - enable matching of substrings
– Consider special characters (spaces, commas, underscores) and

code naming practices (Hungarian notation, CamelCase)

� Insert tokens and annotations into repository
– Ignore tokens with low semantic value (e.g., “and”, “the”)
– Our method uses a search engine as the repository (provides

indexing and querying capabilities)

214100*************************

214200* PROC: ACCOUNT ADDITION.

214800*************************

215000 P0040-PROC1.

“Procedure
convention”
annotation

“Comment”
annotation

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Search and Ranking Stage
� Tokenize service title

– Apply the techniques used during the source code processing stage

� Construct and execute search query
– Include the tokens from the service title
– Exploit unstructured analysis capabilities of the search engine (e.g. stemming, thesauri and

abbreviation usage) to search for inexact matches
• Provide common language and domain-specific thesauri and abbreviation dictionaries to the

search engine

� Analyze query results
– Search engine returns the location of each query token occurrence (or its synonym)
– The method assembles valuable occurrence combinations such that

• There is exactly one match for every token (or one of its synonyms)
• Token match locations are close to each other

� Rank match relevancy
– Evaluate textual similarity: 100% for exact match of all service title tokens
– Aggregate results to procedure level
– Apply supplemental ranking heuristics based on semantic context

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Ranking Heuristics

� High score for match in procedure declaration
� Higher score for match in procedure declaration and in the

adjacent comment
� Match in variable declaration or close to it

– Use data flow analysis results to find variable referencing code
– Identify the reference location as a match with low score
– The rationale: variable definition comment might include the service

title, no additional comment in the variable usage code

� Separate matches for service title subject (noun) and action (verb)
– Look for noun matches in or close to a

variable declaration

– Look for verb matches in or close to the
variable referencing code

075340 01 ACNT-NUMBER PIC S9

…

215000 P0040-PROC1.

215150*** INITIALIZE NUMBER

215160*** BEFORE ADDING

215200 MOVE +0 TO ACNT-NUMBER
Noun
match

Verb
match

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Case Study Implementation

� Implemented a plug-in to an internal IBM
tool that supports the IBM SOMA
methodology

� Leveraged the Unstructured Information
Management Architecture Open Source
framework (UIMA)

� Used Juru as the underlying search engine

� Enables the user to select a service
definition from the to-be model

� Returns a list of ranked implementation
candidates

Service
Title

Ranked Candidate
Locations in Code

Thesauri

1. Source Code Processing

Structured
Analysis

Source
Code

Unstructured
Analysis

2. Search and Ranking

Structured
Analysis

Unstructured
Analysis

UIMA

Juru
Search
Engine

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Case Study

� Used a customer application (a large bank in North America)

– Consists of a set of 30 COBOL programs and 48 copybooks, with a
total size of 60K lines

� Searched for six service titles that are common for banking
applications

� Search in two levels

– The program level – identify the program that is more likely to
contain the requested functionality, by calculating the total match
rate in proportion to its size

– The procedure level – search for specific procedures that
implement the requested functionality. The rank given to each
procedure was calculated using the heuristics described before

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Case Study Results

� Manual inspection of the procedures pointed to by
our method shows that the results are valuable with
80% success rate

– Users are provided with valuable candidates in the legacy
code for service realization

– Greatly assists in the transition to a SOA enabled architecture

� For service title “Reject Transaction” the results were
inconsistent

– The service title is too general and not sufficiently focused
• A transaction is a widely used concept in COBOL programs
• The rejection operation can appear everywhere a transaction

occurs

IBM Haifa Research Lab

© 2007 IBM Corporation	�

Case Study Results cont.

� Some programs appear in the result list of the
program level search only

A match rate that depends only on the textual
fitness of the searched service title to the code text
is not accurate enough
The additional heuristics focus the results on more
appropriate areas in the code

� Identified a main program (A) that routes the
execution to different programs according to the
business function

Guides the user to the entry point of most of the
business functions, from there the execution path of
a specific function can be followed

IBM Haifa Research Lab

© 2007 IBM Corporation�

Future Directions

� Use additional Natural Language processing (NLP) techniques

– Consider sentence breaks in comments, e.g. “… account. Open…”

– Identify main noun and verb in service title, e.g. for title “Open a
new user account” identify “account” and “open”
• Give higher ranking to these in query and ranking
• In OO code look for class names that include the noun and method

names that include the verb
• Identify matches that include a verb in procedure declaration and a noun

as one of the parameter names or variable names in the body

– Consider whether a token in title is a verb or noun during query
expansion, e.g. for “Record Status”, “record” is a verb and not a
noun

IBM Haifa Research Lab

© 2007 IBM Corporation�	

Future Directions cont.

� CRUDL (Create, Read, Update, Delete or List) Analysis

– Identify language constructs that perform these tasks, e.g. for
the notion of “creation” in the service title look for INSERT in
SQL or new and malloc statements in code

� Consider additional information on a service in the
model, e.g.

– Service descriptions

– Service interfaces

� Consider feedback from previously performed
mappings

IBM Haifa Research Lab

© 2007 IBM Corporation��

Summary

� Presented a method for the identification of services in legacy
source code in the context of SOA transformation

� The technology uses a combination of structured and
unstructured analysis techniques over source code and its
comments

– Considers information found in comments

– Elaborates in-exact matches

– Takes into account structural and semantic context of a match
during ranking

� Compared to manual inspection of the code, which is the
prevalent practice nowadays, our method significantly reduces
the required effort

IBM Haifa Research Lab

© 2007 IBM Corporation��

Contacts

� Authors

– Netta Aizenbud neta@il.ibm.com

– Ksenya Kveler ksenya@il.ibm.com

– Inbal Ronen inbal@il.ibm.com

� Software Asset Management Group at HRL

– Jonathan Bnayahu bnayahu@il.ibm.com

